For full credit please show your work and write all proofs using complete sentences. No wireless devices are permitted.

1. For \(K \subset \mathbb{R}^d \), define \(\text{diam} \, K = \sup \{ \| x - y \| : x, y \in K \} \). Prove that \(\text{diam} \, K < \infty \), if \(K \) is compact.

Sps that \(K \) is compact. Then by the Heine-Borel Theorem \(K \) is bounded and thus \(\exists M > 0 \) st. \(\| x \| \leq M \) for all \(x \in K \).

Let \(x, y \in K \), then \(\| x - y \| \leq \| x \| + \| y \| \leq 2M \) and hence the set \(S = \{ \| x - y \| : x, y \in K \} \) is bounded above. Therefore, \(\sup S < \infty \).