Coverage for Test II will include sections §4.2–4.6, 5.1–5.3, 5.5, 5.7, 6.1–6.3. There will be a review Monday and if there is interest a supplementary review Tuesday afternoon. You may bring a formula sheet to the test (one side only; no worked problems). Go over past HW and quizzes. Here is a list of some sample questions.

1. Find a matrix \(A \) so that the \(W = \text{Col} \ A \). Find a basis for \(W \).

\[
W = \left\{ \begin{bmatrix} 2s + t \\ s - 2t \\ 3s - t \end{bmatrix} : s \text{ and } t \text{ are real} \right\}.
\]

2. With \(A \) as follows find bases for \(\text{Col} \ A, \text{Nul} \ A \) and \(\text{Row} \ A \). Find the dimension of each space and determine rank \(A \).

\[
A = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 2 & 3 & 1 & 3 \\ 1 & 2 & 2 & 4 \end{bmatrix}
\]

\(\{a_1, a_2, a_3\}, \{(−2, 1, 0, 1), (0, 1, 1, 1), (0, 0, 1, 2)\}; 3, 1, 3, 3 \)

3. Find a basis for \(\mathbb{P}_3 \) and \(\dim \mathbb{P}_3 \) where

\[\mathbb{P}_3 = \{a_0 + a_1 t + a_2 t^2 + a_3 t^3 : a_0, a_1, a_2, a_3 \text{ real} \}. \]

4. Let \(A \) be a \(5 \times 7 \) matrix with three pivot columns. Find \(\dim \text{Nul} \ A, \text{rank} \ A, \dim \text{Nul} \ A^T \) and \(\text{rank} \ A^T \).

5. The set \(B = \{1 + t + t^2, t - 2t^2, t^3\} \) forms a basis for \(\mathbb{P}_2 \). Find the coordinate vector of \(p(t) = 4 + 3t - t^2 \) relative to \(B \).

\[|p(t)|_B = [1 \ -1 \ -7]^T \]

6. For each of the following matrices, find the characteristic equation, the eigenvalues and a basis for each eigenspace:

\[
A: \lambda - 3)(\lambda - 5) = 0; \ E_1 \ basis \ \{1 [-2] \ 1]^T \}; \ E_2 \ basis \ \{1 [-1]^T \};
\]

\[
C: -\lambda(\lambda - 2)^2; \ E_0 \ basis \ \{1 [0 \ -1]^T \}; \ E_2 \ basis \ \{0 [1 \ 0]^T \}; \ [1 \ 0 \ 1]^T \}
\]

7. For each of the above matrices find if possible a diagonal matrix \(D \) and an invertible matrix \(P \) such that \(A = PDPP^{-1} \). Check your answer by showing that \(AP = PD \).

8. With \(A \) as below, find a diagonal matrix \(D \) and an invertible matrix \(P \) such that \(A = PDPP^{-1} \). Use this factorization to compute \(A^8 \).

\[
A = \begin{bmatrix} 1 & 1 \\ 2 & 0 \end{bmatrix}
\]

\[
D = \begin{bmatrix} -1 & 0 \\ 0 & 2 \end{bmatrix}, \ P = \begin{bmatrix} 1 & 1 \\ -2 & 1 \end{bmatrix}
\]

9. Find the eigenvalues and corresponding eigenvectors in \(\mathbb{C}^2 \) for \(A \).

\[
\lambda = 3 \pm 2i, \ v = [-4 \ 2 \mp 3]^T
\]

10. With \(u_1, u_2 \) as given below, show that \(\{u_1, u_2\} \) forms an orthogonal set. Let \(W = \text{Span}\{u_1, u_2\} \) and find a matrix \(A \) such that \(\text{Nul} \ A = W^⊥ \). Find a nonzero vector \(u_3 \) in \(W^⊥ \). Does \(\{u_1, u_2, u_3\} \) form an orthogonal basis for \(\mathbb{R}^3 \)?

\[
u_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \ u_2 = \begin{bmatrix} -2 \\ 1 \end{bmatrix} \]

\[
u_3 = \begin{bmatrix} 1 \ 0 \ -1 \end{bmatrix}, \ \text{yes}
\]

Find the projection \(\tilde{y} = \text{proj}_W y \) and show that \(y - \tilde{y} = \text{proj}_{W^⊥} y \) where

\[
y = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}
\]

\[
\tilde{y} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}
\]

Find the distance from \(y \) to \(W \) and the distance from \(y \) to \(W^⊥ \).

(11) Consider the vectors:

\[
u_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix}, \ u_2 = \begin{bmatrix} 1 \\ 4 \\ -1 \end{bmatrix}, \ u_3 = \begin{bmatrix} -2 \\ 1 \\ 2 \end{bmatrix}, \ x = \begin{bmatrix} 3 \\ 5 \\ 7 \end{bmatrix}.
\]

a. Show that \(\{u_1, u_2, u_3\} \) forms an orthogonal basis for \(\mathbb{R}^3 \).

b. By normalizing these vectors find an orthonormal basis for \(\mathbb{R}^3 \) and show that the \(3 \times 3 \) matrix \(U \) obtained from this basis satisfies \(U^TU = I_3 \).

c. Use orthogonality to express \(x \) as a linear combination of \(u_1, u_2, u_3 \).

\[
x = 5u_1 + \frac{8}{5}u_2 + \frac{13}{7}u_3.
\]
With A given below find the general solution to the vector differential equation $\mathbf{x}' = A\mathbf{x}$ and then find the solution which satisfies the initial condition $\mathbf{x}(0) = (5, -1)$.

$$x(t) = c_1 e^{2t} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + c_2 e^{-t} \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}; \ c_1 = 1, c_2 = -2$$

$A = \begin{bmatrix} 0 & 2 \\ 1 & 1 \end{bmatrix}$

With A given below find two independent complex solutions to the vector differential equation $\mathbf{x}' = A\mathbf{x}$. Then find the general real solution.

$$e^{(2+i)t} \begin{bmatrix} -1 + i \\ 1 \\ -1 - i \\ 1 \end{bmatrix}, e^{(2-i)t} \begin{bmatrix} -1 - i \\ 1 \\ -1 + i \\ 1 \end{bmatrix}; \ y(t) = c_1 e^{2t} \begin{bmatrix} \cos t - \sin t \\ \cos t \\ \cos t - \sin t \\ \cos t \end{bmatrix} + c_2 e^{2t} \begin{bmatrix} \cos t + \sin t \\ \cos t \\ \cos t + \sin t \\ \cos t \end{bmatrix}$$

$A = \begin{bmatrix} 1 & -2 \\ 1 & 3 \end{bmatrix}$

Explain why the given set W is a subspace of \mathbb{R}^3. Find a matrix A so that $W = \text{Col } A$.

$$W = \left\{ \begin{bmatrix} r + 5s - t \\ 2r + 4s \\ 3s - t \end{bmatrix} : r, s, t \text{ real} \right\}$$

Find a basis for $\text{Nul } A$, $\text{Col } A$ and $\text{Row } A$, where the matrix A and its row reduced echelon form B are given below. How did you find the basis for $\text{Col } A$? Determine $\dim \text{Col } A$, $\dim \text{Nul } A$ and rank A.

$$A = \begin{bmatrix} 1 & 1 & -5 & 1 & 4 \\ 2 & 1 & -7 & 3 & 8 \\ 2 & -3 & 5 & 0 & 1 \\ 0 & 1 & -3 & 1 & 2 \end{bmatrix}, \quad B = \text{rref } A = \begin{bmatrix} 1 & 0 & -2 & 0 & 2 \\ 0 & 1 & -3 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$\{(2,3,1,0,0),(-2,-1,0,-1,1),\{(1,2,2,0),(1,1,-3,1),(1,3,0,1)\}, \{(1,0,-2,0,2),(0,1,-3,0,1),(0,0,0,1,1)\}; 3,2,3$

Find $[\mathbf{x}]_B$, the coordinate vector of \mathbf{x} relative to the basis $B = \{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\}$:

$$\mathbf{x} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}, \quad \mathbf{b}_1 = \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix}, \quad \mathbf{b}_2 = \begin{bmatrix} 0 \\ 1 \\ -2 \end{bmatrix}, \quad \mathbf{b}_3 = \begin{bmatrix} -2 \\ 6 \\ -5 \end{bmatrix}$$

Is $\lambda = 3$ an eigenvalue of the following matrix? If so, find a corresponding eigenvector (please indicate any elementary row operations you use).

$$A = \begin{bmatrix} 4 & 0 & 2 \\ 2 & 4 & 3 \\ 3 & 2 & 7 \end{bmatrix}$$

Yes, $[\begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}]^T$

Find the characteristic polynomial and the eigenvalues for the following matrix:

$$p(\lambda) = -(\lambda + 1)(\lambda - 2)(\lambda - 4)$$

With A as below, find a diagonal matrix D and an invertible matrix P such that $A = PD P^{-1}$.

$$A = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 3 & 1 \\ 0 & 1 & 2 \end{bmatrix}$$

Find the eigenvalues and corresponding eigenvectors in \mathbb{C}^2 for the matrix

$$A = \begin{bmatrix} 3 & -2 \\ 1 & 1 \end{bmatrix}$$

With \mathbf{y} and \mathbf{u} as given below. Write \mathbf{y} as the sum of two vectors, one in $\text{Span}\{\mathbf{u}\}$ and one orthogonal to \mathbf{u}.

$$\mathbf{y} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}, \quad \mathbf{u} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$$

Show that $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ form an orthogonal basis for \mathbb{R}^3. Use orthogonality to express \mathbf{x} as a linear combination of $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$.

$$\mathbf{u}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \quad \mathbf{u}_2 = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \quad \mathbf{u}_3 = \begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}.$$

With $\mathbf{y}, \mathbf{u}_1, \mathbf{u}_2$ as given below, find a vector $\hat{\mathbf{y}}$ in $W = \text{Span}\{\mathbf{u}_1, \mathbf{u}_2\}$ and a vector \mathbf{z} in W^\perp so that $\mathbf{y} = \hat{\mathbf{y}} + \mathbf{z}$. Find the distance from \mathbf{y} to W and the point in W which lies closest to \mathbf{y}.

$$\mathbf{y} = \begin{bmatrix} 1 \\ 3 \\ -2 \end{bmatrix}, \quad \mathbf{u}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \quad \mathbf{u}_2 = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}.$$