Graded K-theory and Graph Algebras

Alex Kumjian1 David Pask2 Aidan Sims2

1University of Nevada, Reno
2University of Wollongong

GPOTS, 1 June 2018
Miami University, Oxford
A C^*-algebra A equipped with an automorphism α of order two is said to be \mathbb{Z}_2-graded or simply graded.

Forty years ago Kasparov introduced KK, a bivariate K-functor for graded C^*-algebras that revolutionized the study of K-theory for trivially graded C^*-algebras.

The work reported on here grew out of an attempt by David Pask, Aidan Sims and me to understand the K-theory of graded graph C^*-algebras.

We proved graded versions of Pimsner’s six-term exact sequences for KK-groups associated to Cuntz-Pimsner algebras and derived some key corollaries such as an exact sequence for computing the K-theory of graded graph C^*-algebras that generalizes the usual one used to compute the K-theory for trivially graded graph C^*-algebras and a graded version of the Pimsner-Voiculescu six-term exact sequence.

We also computed the graded K-theory of a number of examples.
A C^*-algebra A equipped with an automorphism α of order two is said to be \textit{graded} and α is called the grading automorphism or simply the grading. Denote the induced grading on $\mathcal{M}(A)$ by α. An element $a \in A$ is said to \textit{homogeneous} of degree $\partial a = i$ where $i \in \mathbb{Z}_2$ if $\alpha(a) = \begin{pmatrix} -1 \\ 1 \end{pmatrix}^{\partial a} a$. Every $a \in A$ may be expressed uniquely as a sum $a = a_0 + a_1$ where $\partial a_i = i$. Thus $A = A_0 \oplus A_1$ where A_i consists of all $a \in A$ of degree i.

We say that A is \textit{inner graded} if there is a self-adjoint unitary $u \in \mathcal{M}(A)$ s.t. $\alpha(a) = uau$ for all $a \in A$.

The first (complex) Clifford algebra is the C^*-algebra $C_1 = \mathbb{C} \oplus \mathbb{C}$ endowed with the grading $\alpha(x, y) = (y, x)$.

There is a graded tensor product $A \hat{\otimes} B$ of graded C^*-algebras s.t. if $a, a' \in A$ and $b, b' \in B$ are homogeneous elements

$$\partial(a \hat{\otimes} b) = \partial a + \partial b, \quad (a \hat{\otimes} b)(a' \hat{\otimes} b') = (-1)^{\partial b \partial a'} aa' \hat{\otimes} bb'.$$

Note that $C_2 := C_1 \hat{\otimes} C_1 \cong M_2(\mathbb{C})$ with inner grading determined by $u = \text{diag}(1, -1)$. More generally, $C_{n+1} := C_n \hat{\otimes} C_1$.

Graded C^*-algebras

Kumjian, Pask & Sims
Graph C^*-algebras owe their origin to Cuntz algebras and more generally Cuntz-Krieger algebras. Let $E = (E^1, E^0, r, s)$ be a directed graph with vertices E^0, edges E^1 and maps $r, s : E^1 \to E^0$. Suppose $0 < r^{-1}(v) < \infty$ for all v. Let $C^*(E)$ denote the universal C^*-algebra generated by an orthogonal set of projections $\{p_v : v \in V\}$ and a family of partial isometries $\{t_e : e \in E\}$ satisfying

i. $t_e^*t_e = p_{s(e)}$ for every $e \in E^1$,

ii. $p_v = \sum_{r(e) = v} t_e t_e^*$ for every $v \in E^0$.

Given a map $\delta : E^1 \to \mathbb{Z}_2$, universality of $C^*(E)$ ensures the existence of a grading $\alpha = \alpha^\delta$ such that for all $v \in E^0, e \in E^1$

$$\alpha(p_v) = p_v \quad \text{and} \quad \alpha(t_e) = (-1)^{\delta(e)} t_e.$$

If $\delta(e) = 1$ for all $e \in E^1$, α is called the standard grading.
Consider the graph B_n with $B_n^0 := \{v\}$ and $B_n^1 := \{1, 2, \ldots, n\}$.

Since B_1 has a one edge and one vertex the definition implies that $C^*(B_1) \cong C(\mathbb{T})$. If $n \geq 2$, $C^*(B_n) \cong \mathcal{O}_n$.

Define the directed cycle C_n with $C_n^0 = \{v_1, \ldots, v_n\}$ and $C_n^1 = \{e_1, \ldots, e_n\}$ such that $r(e_i) = v_i$ and $s(e_i) = v_{i+1}$ if $i < n$ and $s(e_n) = v_1$. Then $C^*(B_n) \cong M_n(C(\mathbb{T}))$. The center is generated by $\sum_i t_{e_i} \cdots t_{e_n} t_{e_1} \cdots t_{e_{i-1}}$.

Define the graph Ω by $\Omega^0 = \Omega^1 := \mathbb{N}$ with $s(n) = n + 1$ and $r(n) = n$. Then $C^*(\Omega) \cong \mathcal{K}(\ell^2(\mathbb{N}))$.

\[B_2 \]
Graded K-theory

We use Kasparov’s KK bifunctor (see [K], [B, 17.3]) to define the K-theory of a graded C^*-algebra. See [vD, H] for other approaches.

Definition

Let (A, α) be a σ-unital graded C^*-algebra. Define the graded K groups of A as follows:

\[
K_{0}^{gr}(A, \alpha) := KK(\mathbb{C}, A),
\]
\[
K_{1}^{gr}(A, \alpha) := KK(\mathbb{C}, A \hat{\otimes} C_1).
\]

When α is understood from context write $K_i^{gr}(A)$ for $K_i^{gr}(A, \alpha)$.

Note: We have $K_*^{gr}(\mathbb{C}) = (\mathbb{Z}, 0)$ and $K_i^{gr}(C_1) = K_{i+1}^{gr}(\mathbb{C})$.

If A is inner graded, then $K_i^{gr}(A) = K_i(A)$.

Skandalis has shown that under mild hypotheses the six-term exact sequence for extensions also holds for graded K-theory (see [S]).
The K-theory of graded graph C^*-algebras

Let E be a graph s.t. $0 < r^{-1}(v) < \infty$ for all v. Let $\delta : E^1 \to \mathbb{Z}_2$ be a map and let $\alpha = \alpha^\delta$ be the grading such that for all $v \in E^0$, $e \in E^1$, $\alpha(p_v) = p_v$ and $\alpha(t_e) = (-1)^{\delta(e)}t_e$. Let A^δ_E be the $E^0 \times E^0$ matrix defined by

$$A^\delta_E(v, w) = \sum_{e \in vE^1w} (-1)^{\delta(e)}$$

Theorem

The following sequence is exact.

$$0 \to K^{gr}_1(C^*(E), \alpha) \to \mathbb{Z}E^0 \xrightarrow{1-(A^\delta_E)^t} \mathbb{Z}E^0 \to K^{gr}_0(C^*(E), \alpha) \to 0$$

Example (a)

Let C_n be the directed cycle as above and let $\delta(e_i) = 1$ for $i = 1, \ldots, n$. By the above theorem, $K^{gr}_*(C^*(C_n), \alpha) \cong (\mathbb{Z}, \mathbb{Z})$ if n is even and $K^{gr}_*(C^*(C_n), \alpha) \cong (\mathbb{Z}_2, 0)$ if n is odd.
Example (b)

Let B_n be the graph with one vertex and n edges and let $\delta : B_n^1 \to \{0, 1\}$ be a map. Set $p := |\delta^{-1}(1)|$ and $q := |\delta^{-1}(0)|$. Note that $C^*(B_n) \cong \mathcal{O}_n$ and $A_{\delta}^{\mathcal{B}_n}$ is a 1×1 matrix with entry $q - p$. Therefore we have (cf. [H, 4.11])

$$K_{\ast}^{gr}(\mathcal{O}_n) \cong \begin{cases} (\mathbb{Z}|1+p-q|, 0) & \text{if } 1 + p - q \neq 0, \\ (\mathbb{Z}, \mathbb{Z}) & \text{otherwise}. \end{cases}$$

Example (c)

We define a graph E as follows: set $E^0 := \{v_n : n \in \mathbb{Z}\}$ and $E^1 := \{e_n, f_n : n \in \mathbb{Z}\}$; the range and source maps are given by $r(e_n) = r(f_n) = v_n$ and $s(e_n) = v_{n+1}$ and $s(f_n) = v_n$ for $n \in \mathbb{Z}$. Define $\delta : E^1 \to \mathbb{Z}_2$ by $\delta(e_n) = \delta(f_n) = 1$ for all n. Then $A_{E}^{\delta}(v_m, v_n) = -1$ if $n = m, m + 1$ and 0 otherwise; by a routine computation, $K_{0}^{gr}(C^*(E), \alpha) = \mathbb{Z}[\frac{1}{2}]$ and $K_{1}^{gr}(C^*(E), \alpha) = 0$.
Let \((A, \alpha)\) be a \(\sigma\)-unital graded \(C^*\)-algebra and let \(\gamma \in \mathrm{Aut}(A)\) s.t.
\(\gamma \alpha = \alpha \gamma\). There are two natural gradings \(\beta^k\) for \(k = 0, 1\) on the
crossed product \(A \rtimes_\gamma \mathbb{Z}\). Let \(j : A \to A \rtimes_\gamma \mathbb{Z}\) denote the natural
inclusion and let \(u \in \mathcal{M}(A)\) be the canonical unitary such that
\(j(\gamma(a)) = u j(a) u^*\) for all \(a \in A\). Then for \(k = 0, 1\) the gradings are
determined by the formulae: \(\beta^k(u) = (-1)^k u, \beta^k(i(a)) = i(\alpha(a))\)
for all \(a \in A\).

Theorem

The following six-term exact sequence is exact for \(k = 0, 1\).

\[
\begin{array}{cccc}
K_0^{\text{gr}}(A, \alpha) & \xrightarrow{\text{id} - (-\alpha^*)^k \gamma^*} & K_0^{\text{gr}}(A, \alpha) & \xrightarrow{i_*} & K_0^{\text{gr}}(A \rtimes_\gamma \mathbb{Z}, \beta^k) \\
& \uparrow & & \downarrow & \\
K_1^{\text{gr}}(A \rtimes_\gamma \mathbb{Z}, \beta^k) & \xleftarrow{i_*} & K_1^{\text{gr}}(A, \alpha) & \xleftarrow{\text{id} - (-\alpha^*)^k \gamma^*} & K_1^{\text{gr}}(A, \alpha)
\end{array}
\]
Example (d)

Take $A = \mathbb{C}$ with the trivial grading and let γ be the identity automorphism. Then $A \rtimes_{\gamma} \mathbb{Z} \cong C^*(\mathbb{Z}) \cong C(\mathbb{T})$ and β^0 is trivial but not β^1. Under the above isomomorphism $\beta^1(f)(z) = f(-z)$. In this case we have $\text{id} - (-\alpha_\gamma)^k \gamma_* = 2 \text{id}$. Since $K_0^{gr}(A, \alpha) = K_0(\mathbb{C}) \cong \mathbb{Z}$ and $K_1^{gr}(A, \alpha) = K_1(\mathbb{C}) \cong 0$, we have

$$K_0^{gr}(C(\mathbb{T}), \beta^1) \cong \mathbb{Z}_2 \quad \text{and} \quad K_0^{gr}(C(\mathbb{T}), \beta^1) = 0.$$

Example (e)

Now let E and δ be as in Example (c) above and let γ be the automorphism of $C^*(E)$ such that $\gamma(p_{v_n}) = p_{v_{n+1}}$, $\gamma(s_{e_n}) = s_{e_{n+1}}$, $\gamma(s_{f_n}) = s_{f_{n+1}}$ for all n. Note that the map induced by the grading on $K_i^{gr}(C^*(E), \alpha)$ is the identity (see [KPS, 8.8]) and the map induced by γ_γ is multiplication by -2. So if we take the grading β^1 on $A \rtimes_{\gamma} \mathbb{Z}$ the map $\text{id} - (-\alpha_\gamma) \gamma_\gamma$ on $K_0^{gr}(C^*(E), \alpha)$ is a bijection. Hence $K_i^{gr}(A \rtimes_{\gamma} \mathbb{Z}, \beta^1) = 0$ for $i = 0, 1$.

Kumjian, Pask & Sims
Graded K-theory and Graph Algebras
[B] B. Blackadar,

[vD] A. van Daele,

[H] U. Haag,

[K] G.G. Kasparov,
The operator C\(^\)-functor and extensions of C\(^*\)-algebras*, 1980.

[KPS] Kumjian, Pask and Sims,
Graded C\(^\)-algebras, graded K-theory and twisted P-graph C\(^*\)-algebras*, preprint.

[P] M. Pimsner,

[S] G. Skandalis,
Exact sequences for the Kasparov groups of graded algebras, 1985.
Questions?
An exact sequence for graded Cuntz-Pimsner algebras

Let \((A, \alpha)\) be a \(\sigma\)-unital graded \(C^*\)-algebra and let \(X\) be a countably generated graded correspondence over \(A\). There is an element \([X] \in KK(A, A)\) and a grading \(\alpha_O\) on the Cuntz-Pimsner algebra \(O_X\) compatible with the map \(i : A \to O_X\). Since \(K^\text{gr}_0(A) = KK(\mathbb{C}, A)\), the product with \([\text{id}_A] - [X]\) yields an endomorphism on \(K^\text{gr}_0(A)\) denoted \(\hat{\otimes}_A([\text{id}_A] - [X])\) (cf. \([P, 4.9]\)).

Theorem (Pimsner)

With notation as above suppose that left action of \(A\) on \(X\) is injective and by compacts. Then the following is exact.

\[
\begin{array}{cccccc}
K^\text{gr}_0(A, \alpha) & \xrightarrow{\hat{\otimes}_A([\text{id}_A] - [X])} & K^\text{gr}_0(A, \alpha) & \xrightarrow{i_*} & K^\text{gr}_0(O_X, \alpha_O) \\
K^\text{gr}_1(O_X, \alpha_O) & \xleftarrow{i_*} & K^\text{gr}_1(A, \alpha) & \xleftarrow{\hat{\otimes}_A([\text{id}_A] - [X])} & K^\text{gr}_1(A, \alpha) \\
\end{array}
\]
If there is time, here’s one more example.

Example (f)

We define a graph E as follows: set $E^0 := \{v_n : n \in \mathbb{Z}\}$ and $E^1 := \{e_n, f_n : n \in \mathbb{Z}\}$; the range and source maps are given by $r(e_n) = r(f_n) = v_n$ and $s(e_n) = s(f_n) = v_{n+1}$ for $n \in \mathbb{Z}$. Define $\delta : E^1 \to \mathbb{Z}_2$ by $\delta(e_n) = 0$ and $\delta(f_n) = 1$ for all n. Then A^δ_E is zero and, hence, the map $\mathbb{Z}E^0 \to \mathbb{Z}E^0$ is the identity in the exact sequence above. Thus, $K^\text{gr}_i(C^*(E), \alpha) = 0$ for $i = 0, 1$. Note that $C^*(E)$ is Morita equivalent to the UHF algebra $M_{2\infty}$.