6.2: a) “Pulling slowly” can be taken to mean that the bucket rises at constant speed, so the tension in the rope may be taken to be the bucket’s weight. In pulling a given length of rope, from Eq. (6.1),
\[W = Fs = mgs = (6.75 \text{ kg}) (9.80 \text{ m/s}^2) (4.00 \text{ m}) = 264.6 \text{ J.} \]
b) Gravity is directed opposite to the direction of the bucket’s motion, so Eq. (6.2) gives the negative of the result of part (a), or \(-265 \text{ J.}\) c) The net work done on the bucket is zero.

6.3: \((25.0 \text{ N})(12.0 \text{ m}) = 300 \text{ J.}\)

6.16: Doubling the speed increases the kinetic energy, and hence the magnitude of the work done by friction, by a factor of four. With the stopping force given as being independent of speed, the distance must also increase by a factor of four.

6.22: a) If there is no work done by friction, the final kinetic energy is the work done by the applied force, and solving for the speed,
\[v = \sqrt{\frac{2W}{m}} = \sqrt{\frac{2Fs}{m}} = \sqrt{\frac{2(36.0 \text{ N})(1.20 \text{ m})}{(4.30 \text{ kg})}} = 4.48 \text{ m/s.} \]
b) The net work is \(Fs - F_k s = (F - \mu_k mg)s\), so
\[v = \sqrt{\frac{2(F - \mu_k mg)s}{m}} \]
\[= \sqrt{\frac{2(36.0 \text{ N} - (0.30)(4.30 \text{ kg})(9.80 \text{ m/s}^2))(1.20 \text{ m})}{(4.30 \text{ kg})}} \]
\[= 3.61 \text{ m/s.} \]
(Note that even though the coefficient of friction is known to only two places, the difference of the forces is still known to three places.)

6.42: The initial and final kinetic energies of the brick are both zero, so the net work done on the brick by the spring and gravity is zero, so \((1/2)kd^2 - mgh = 0\), or
\[d = \sqrt{\frac{2mgh}{k}} = \sqrt{\frac{2(1.80 \text{ kg})(9.80 \text{ m/s}^2)(3.6 \text{ m})}{(450 \text{ N/m})}} = 0.53 \text{ m.} \] The spring will provide an upward force while the spring and the brick are in contact. When this force goes to zero, the spring is at its uncompressed length.

6.44: Set time to stop:
\[\Sigma F = ma : \mu_k mg = ma \]
\[a = \mu_k g = (0.200)(9.80 \text{ m/s}^2) = 1.96 \text{ m/s}^2 \]
\[v = v_0 + at \]
\[0 = 8.00 \text{ m/s} - (1.96 \text{ m/s}^2)t \]
\[t = 4.08 \text{ s} \]
\[
P = \frac{KE}{t} = \frac{\frac{1}{2}mv^2}{t} = \frac{\frac{1}{2}(20.0 \text{ kg})(8.00 \text{ m/s}^2)}{4.08 \text{ s}} = 157 \text{ W}
\]

6.48: a) The number per minute would be the average power divided by the work \((mgh)\) required to lift one box,

\[
\frac{(0.50 \text{ hp})(746 \text{ W/hp})}{(30 \text{ kg})(9.80 \text{ m/s}^2)(0.90 \text{ m})} = 1.41 /s,
\]
or 84.6 /min.

b) Similarly,

\[
\frac{(100 \text{ W})}{(30 \text{ kg})(9.80 \text{ m/s}^2)(0.90 \text{ m})} = 0.378 /s,
\]
or 22.7 /min.

6.66: Let \(x\) be the distance past P.

\[
\mu_k = 0.100 + Ax
\]

when \(x = 12.5 \text{ m}\), \(\mu_k = 0.600\)

\[
A = 0.500/12.5 \text{ m} = 0.0400/\text{m}
\]

(a)

\[
W = \Delta KE : W_i = KE_i - KE_i
\]

\[
= - \int \mu_kmgdx = 0 - \frac{1}{2}mv_i^2
\]

\[
g \int_{0}^{x_i} (0.100 + Ax)dx = \frac{1}{2}v_i^2
\]

\[
g \left[(0.100)x_i + A \frac{x_i^2}{2} \right] = \frac{1}{2}v_i^2
\]

\[
(9.80 \text{ m/s}^2) \left[(0.100)x_i + (0.0400/\text{m}) \frac{x_i^2}{2} \right] = \frac{1}{2}(4.50 \text{ m/s})^2
\]

Solve for \(x_i : x_i = 5.11 \text{ m}\)

(b) \(\mu_k = 0.100 + (0.0400/\text{m})(5.11 \text{ m}) = 0.304\)

(c) \(W_i = KE_i - KE_i\)

\[
- \mu_kmgx = 0 - \frac{1}{2}mv_i^2
\]

\[
x = v_i^2 / 2\mu_k g = \frac{(4.50 \text{ m/s})^2}{2(0.100)(9.80 \text{ m/s}^2)} = 10.3 \text{ m}
\]
6.70: a) This is similar to Problem 6.64, but here \(\alpha > 0 \) (the force is repulsive), and \(x_2 < x_1 \), so the work done is again negative;

\[
W = \alpha \left(\frac{1}{x_1} - \frac{1}{x_2} \right) = \left(2.12 \times 10^{-26} \text{ N} \cdot \text{m}^2 \left((0.200 \text{ m}^{-1}) - (1.25 \times 10^9 \text{ m}^{-1}) \right) \right) = -2.65 \times 10^{-17} \text{ J}.
\]

Note that \(x_1 \) is so large compared to \(x_2 \) that the term \(\frac{1}{x_1} \) is negligible. Then, using Eq. (6.13)) and solving for \(v_2 \),

\[
v_2 = \sqrt{\frac{v_1^2 + \frac{2W}{m}}{m}} = \sqrt{\frac{(3.00 \times 10^5 \text{ m/s})^2 + \frac{2(-2.65 \times 10^{-17} \text{ J})}{(1.67 \times 10^{-27} \text{ kg})}} = 2.41 \times 10^3 \text{ m/s}.
\]

b) With \(K_2 = 0, W = -K_1 \). Using \(W = -\frac{\alpha}{x_2} \),

\[
x_2 = \frac{\alpha}{K_1} = \frac{2\alpha}{mv_1^2} = \frac{2(2.12 \times 10^{-26} \text{ N} \cdot \text{m}^2)}{(1.67 \times 10^{-27} \text{ kg})(3.00 \times 10^5 \text{ m/s})^2} = 2.82 \times 10^{-10} \text{ m}.
\]

c) The repulsive force has done no net work, so the kinetic energy and hence the speed of the proton have their original values, and the speed is \(3.00 \times 10^5 \text{ m/s} \).