Problem Set 3

6.10
To solve this problem we use the van’t Hoff equation,

\[\ln \left(\frac{K_2}{K_1} \right) = \left(\frac{\Delta_f H^\circ}{R} \right) \left(\frac{1}{T_1} - \frac{1}{T_2} \right) \]

The process is \(\text{CO}_2(\text{s}) \rightleftharpoons \text{CO}_2(\text{g}) \), with equilibrium constant \(K_p = \left(\frac{P_{\text{CO}_2}}{P^0} \right) \)
Since \(K_p \) is proportional to \(P_{\text{CO}_2} \)

\[\ln \left(\frac{K_2}{K_1} \right) = \ln \left(\frac{P_{\text{CO}_2,2}}{P_{\text{CO}_2,1}} \right) = \left(\frac{\Delta_f H^\circ}{R} \right) \left(\frac{1}{T_1} - \frac{1}{T_2} \right) \]
\[\ln \left(\frac{1486 \text{ torr}}{672.2 \text{ torr}} \right) = \left(\frac{\Delta_f H^\circ}{8.314 \text{ J K}^{-1} \text{ mol}^{-1}} \right) \left(\frac{1}{193.2 \text{ K}} - \frac{1}{203.2 \text{ K}} \right) \]
\[\Delta_f H^\circ = 2.59 \times 10^4 \text{ J mol}^{-1} \]

6.15
For the reaction \(\text{cis-2-butene(g)} \rightleftharpoons \text{trans-2-butene(g)} \)

\[\Delta_f G^\circ = \Delta_f G^\circ \left[\text{trans-2-butene} \right] - \Delta_f G^\circ \left[\text{cis-2-butene} \right] \]
\[= 64.10 \text{ kJ mol}^{-1} - 67.15 \text{ kJ mol}^{-1} \]
\[= -3.05 \text{ kJ mol}^{-1} \]

Since \(K_p = \left(\frac{P_{\text{trans-2-butene}}}{P_{\text{cis-2-butene}}} \right) \)
the equilibrium constant gives the ratio of the equilibrium pressures of the isomers. This ratio can be determined using \(\Delta_f G^\circ \).

\[\ln K_p = -\Delta_f G^\circ / RT = (-3.05 \times 10^3 \text{ J mol}^{-1})/(8.314 \text{ J K}^{-1} \text{ mol}^{-1})(298 \text{ K}) = 1.231 \]
\[K_p = \left(\frac{P_{\text{trans-2-butene}}}{P_{\text{cis-2-butene}}} \right) = 3.42 \]
The dissociation constant can be obtained by plotting $Y/[L]$ vs Y. The slope is $-1/K_d$. L and Y are obtained from the following relations:

$$[L] = [Ca^{2+}]_{\text{total}} - [Ca^{2+}]_{\text{bound}}$$

$$Y = [Ca^{2+}]_{\text{bound}} / 96 \, \mu M$$

According to the data given, the values of $[L]$, Y, and $Y/[L]$ are

<table>
<thead>
<tr>
<th>$[L]$ (μM)</th>
<th>28.2</th>
<th>68.8</th>
<th>116.6</th>
<th>169.2</th>
<th>396.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>0.3250</td>
<td>0.5333</td>
<td>0.6604</td>
<td>0.7375</td>
<td>0.8688</td>
</tr>
<tr>
<td>$Y/[L]$</td>
<td>11.28</td>
<td>7.751</td>
<td>5.664</td>
<td>4.359</td>
<td>2.191</td>
</tr>
</tbody>
</table>

The units for $Y/[L]$ are M^{-1} and the results tabulated above were multiplied by 10^{-3}. The slope of the plot shown below is -16.72×10^{-3}. Therefore, $K_d = 1/(16.72 \times 10^{-3}) = 59.8$

Notice, though, that this result has units of μM. We want K_d to be dimensionless, so better to convert to M (since standard concentrations are 1 M). Then we multiply by $10^6 M/1 \, \mu M$, so that

$$K_d = 5.98 \times 10^{-5}$$

Since there is only one binding site, we would not need to solve the problem graphically (except that the problem asks us to). For one set of values for $[L]$, $[P]$, and $[PL]$, we find a very similar answer by solving directly for $K_d = \frac{([L]/1M)([P]/1M)}{[LP]/1M}$.
\[\Delta_i G = \Delta_i G^\circ + RT \ln Q = \Delta_i G^\circ + RT \ln \frac{\text{[glucose-6-phosphate]}}{\text{[glucose][HPO}_4^{2-}]} \]

\[= 13.4 \times 10^3 \text{ J mol}^{-1} + \]
\[(8.314 \text{ J K}^{-1} \text{ mol}^{-1})(310 \text{ K}) \ln((1.6 \times 10^{-4})/(4.5 \times 10^{-2})(2.7 \times 10^{-3})) \]

\[= 14.1 \text{ kJ mol}^{-1} > 0 \]

The reaction is therefore not spontaneous.

\[6.32 \]

\[\Delta_i G^\circ \text{ is calculated from the standard molar Gibbs energy of formation of reactants and products} \]
\[\Delta_i G^\circ = \Delta_i G^\circ (\text{glycylglycine}) + \Delta_i G^\circ (\text{H}_2\text{O}) - 2\Delta_i G^\circ (\text{glycine}) \]
\[= (-493.1 \text{ kJ mol}^{-1}) + (-237.2 \text{ kJ mol}^{-1}) - 2(-379.9 \text{ kJ mol}^{-1}) \]

\[= 29.5 \text{ kJ mol}^{-1} > 0 \]

Furthermore,

\[\ln K' = -\frac{\Delta_i G^\circ}{RT} = -(29.5 \times 10^3 \text{ J mol}^{-1})/(8.314 \text{ J K}^{-1} \text{ mol}^{-1})(298 \text{ K}) = -11.91 \]

\[K' = 6.72 \times 10^{-6} \]

We can assume that \(K' \) is similar at 310 K. The large, positive \(\Delta_i G^\circ \) and very small \(K' \) tell us that this synthesis is not spontaneous. In the cell, ATP is present to aid in this reaction.