Example 1. \(\frac{dy}{dx} = x - y \) (Use slope fields).

Example 2. Use Euler’s method with step size \(h = 0.5 \) to solve \(\frac{dy}{dx} = x - y \) with initial value \(y(0) = 1 \).

Example 3. Use Euler’s method with step size \(h = 0.1 \) to solve \(\frac{dy}{dx} = xy \) with initial value \(y(1) = 1 \). Find \(y(1.5) \).

Example 1. Solve \(\frac{dy}{dx} = ky \).

Example 2. Solve \(\frac{dy}{dx} = xy \) with initial condition \(y(1) = 1 \) and compare the approximating result \(y(1.5) \) with Example 3 in §9.2.

Example 3. Solve \(\frac{dy}{dx} = \frac{2x}{6y^2 - \sin y} \).

Example 4. Solve \(\frac{dy}{dx} = 4x^3y \) with the initial condition \(y(0) = 3 \).

Example 5. Solve \((\sec^2 y)x^{-1}y' = e^{2x^2} \).

Example 6. Find the orthogonal trajectories of the family of curves \(y = kx \) for \(k \in \mathbb{R} \).

Example 7. Find the orthogonal trajectories of the family of curves \(y = kx^2 \) for \(k \in \mathbb{R} \).