To receive full credits, write down all steps. No aide besides a scientific calculator is allowed.

1. (7 points) Let \(\vec{a} = (1, 2, 3) \) and \(\vec{b} = (1, 4, -3) \).

 (1). Find \(2\vec{a} - \vec{b} \).
 \[
 2\vec{a} - \vec{b} = \langle 2, 4, 6 \rangle - \langle 1, 4, -3 \rangle = \langle 1, 0, 9 \rangle
 \]

 (2). Find the length of \(\vec{a} \).
 \[
 |\vec{a}| = \sqrt{1^2 + 2^2 + 3^2} = \sqrt{14}
 \]

 (3). Find the dot product \(\vec{a} \cdot \vec{b} \).
 \[
 \vec{a} \cdot \vec{b} = \langle 1, 2, 3 \rangle \cdot \langle 1, 4, -3 \rangle = 1 + 8 - 9 = 0
 \]

 (4). What is the angle between \(\vec{a} \) and \(\vec{b} \)? (Hint: using the result in (3))
 Since \(\vec{a} \cdot \vec{b} = 0 \), then \(\vec{a} \) and \(\vec{b} \) are orthogonal.

 A. 0 B. \(\frac{\pi}{2} \) C. \(\frac{\pi}{3} \) D. \(\frac{\pi}{4} \) E. \(\pi \)

2. (3 points)
 (1) Find the equation of a sphere with center \((1, -2, 3)\) and radius 3.
 \[
 (x-1)^2 + (y+2)^2 + (z-3)^2 = 9
 \]

 (2) How does this sphere in (1) intersect with the xy-plane? (Hint: using the equation of the sphere and the equation of the xy-plane)
 A. a circle B. a single point C. no intersection
 \[
 (x-1)^2 + (y+2)^2 + (z-3)^2 = 9
 \]
 \[
 (x-1)^2 + (y+2)^2 = 9
 \]
 \[
 (x-1)^2 + (y+2)^2 = 0
 \]
 \[
 x = 1, \quad y = -2
 \]