§12.2 Vectors

A vector is a quantity that has magnitude and direction. A vector is often represented by a directed line segment, denoted by \mathbf{v} or \mathbf{u}. A particle moves along a line segment from point A to point B.

* The vector \mathbf{AB} has the same length and the same direction as \mathbf{CD} even though it is in a different position. We say that \mathbf{AB} and \mathbf{CD} are equivalent (or equal) and we write $\mathbf{AB} = \mathbf{CD}$.

* Zero vector has no direction, denoted by $\mathbf{0}$.

- Operations of vectors

1. Sum $\mathbf{AB} + \mathbf{BC} = \mathbf{AC}$.

The triangle law

The parallelogram law

$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$
2. **Scalar product**

If \(c \in \mathbb{R} \) is a scalar and \(\vec{v} \) is a vector, then the **scalar multiple** \(c\vec{v} \) is the vector whose length \(|c| \) is times the length of \(\vec{v} \) and whose direction is the same as \(\vec{v} \) if \(c > 0 \) and is opposite to \(\vec{v} \) if \(c < 0 \).

If \(c = 0 \) or \(\vec{v} = \vec{0} \), then \(c\vec{v} = \vec{0} \).

3. **Difference**

Difference of two vectors can be defined using sum and scalar product: \(\vec{u} - \vec{v} = \vec{u} + (-1)\vec{v} \)
Components (vectors in coordinate system)

- A vector \(\vec{v} \) starting from origin to a point \(P((a, b) \text{ or } (a, b, c)) \), depending on \(\mathbb{R}^2 \text{ or } \mathbb{R}^3 \) is called the **position vector** of \(P \). The coordinates are called the **components** of \(\vec{v} \). We denote \(\vec{v} = \langle a, b, c \rangle \).
- Given the points \(A(x_1, x_2, x_3) \) and \(B(x_2, y_2, z_2) \), the vector \(\vec{v} \) with representation \(\overrightarrow{AB} \) is
 \[
 \vec{v} = \langle x_2 - x_1, y_2 - y_1, z_2 - z_1 \rangle.
 \]

Example: Find the vector represented by the directed line segment with initial point \(A(1, -2, 3) \) and terminal point \(B(2, 1, 5) \).

The vector corresponding to \(\overrightarrow{AB} \) is

\[
\vec{v} = \langle 2-1, 1-(-2), 5-3 \rangle = \langle 1, 3, 2 \rangle
\]

The magnitude or length of the vector \(v = \langle a, b, c \rangle \) in \(\mathbb{R}^3 \) is

\[
|\vec{v}| = \sqrt{a^2 + b^2 + c^2}.
\]

The length of \(v = \langle a, b \rangle \) in \(\mathbb{R}^2 \) is \(|\vec{v}| = \sqrt{a^2 + b^2} \).

Q: How to add and subtract algebraic vectors? **A:** Component-wise.

If \(\vec{v} = \langle a_1, a_2 \rangle \) and \(\vec{w} = \langle b_1, b_2 \rangle \), then

\[
\vec{v} + \vec{w} = \langle a_1 + b_1, a_2 + b_2 \rangle; \quad \vec{v} - \vec{w} = \langle a_1 - b_1, a_2 - b_2 \rangle; \quad \text{and} \quad c\vec{v} = \langle ca_1, ca_2 \rangle.
\]
Example: If \(\vec{a} = \langle 2, 3, 0 \rangle \) and \(\vec{b} = \langle -1, 2, 4 \rangle \), then
\[
|\vec{a}| = \sqrt{2^2 + 3^2} = \sqrt{13}
\]
\[
\vec{a} + \vec{b} = \langle 1, 5, 4 \rangle
\]
\[
3\vec{b} = \langle -3, 6, 12 \rangle
\]
\[
\vec{a} - \vec{b} = \langle 3, 1, -4 \rangle
\]
\[
2\vec{a} + 3\vec{b} = \langle 4, 6, 0 \rangle + \langle -3, 6, 12 \rangle = \langle 1, 12, 12 \rangle
\]

Theorem (Algebraic Properties) For \(\vec{u} \) and \(\vec{w} \) vectors in \(\mathbb{R}^n \), and \(c, d \) scalars, the following algebraic properties hold.

1. \(\vec{u} + \vec{w} = \vec{w} + \vec{u} \) \textit{Commutative}
2. \((\vec{u} + \vec{v}) + \vec{w} = \vec{v} + (\vec{u} + \vec{w}) \) \textit{Associative}
3. \(\vec{u} + \vec{0} = \vec{u} \)
4. \(\vec{u} + (-\vec{u}) = \vec{0} \)
5. \(c(\vec{u} + \vec{w}) = c\vec{u} + c\vec{w} \) \textit{Distributive}
6. \((c + d)\vec{u} = c\vec{u} + d\vec{u} \)
7. \(c(d\vec{u}) = (cd)\vec{u} \)
8. \(1\vec{u} = \vec{u} \)

Standard basis vectors: \(\vec{i} = \langle 1, 0, 0 \rangle, \vec{j} = \langle 0, 1, 0 \rangle, \vec{k} = \langle 0, 0, 1 \rangle \).
We can express any vector \(\vec{v} = \langle a, b, c \rangle \) in terms of \(\vec{i}, \vec{j}, \) and \(\vec{k}, \) as

\[
\vec{v} = a\vec{i} + b\vec{j} + c\vec{k}.
\]

\[
\vec{v} = \langle a, b, c \rangle = \langle a, 0, 0 \rangle + \langle 0, b, 0 \rangle + \langle 0, 0, c \rangle
\]

\[
= a\langle 1, 0, 0 \rangle + b\langle 0, 1, 0 \rangle + c\langle 0, 0, 1 \rangle
\]

\[
= a\vec{i} + b\vec{j} + c\vec{k}
\]

Example: If \(\vec{a} = 2\vec{i} + \vec{j} - 4\vec{k} \) and \(\vec{b} = 3\vec{i} - 6\vec{j} \), express the vector \(3\vec{a} - 2\vec{b} \) in terms of \(\vec{i}, \vec{j}, \) and \(\vec{k} \).

\[
3\vec{a} - 2\vec{b} = 3(2\vec{i} + \vec{j} - 4\vec{k}) - 2(3\vec{i} - 6\vec{j})
\]

\[
= 6\vec{i} + 3\vec{j} - 12\vec{k} - 6\vec{i} + 12\vec{j}
\]

\[
= 15\vec{j} - 12\vec{k}
\]

* A **unit vector** is a vector whose length is 1. For example, \(\vec{i}, \vec{j}, \) and \(\vec{k} \) are unit vectors. In general, if \(\vec{a} \neq \vec{0} \), then the unit vector that has the same direction as \(\vec{a} \) is

\[
\vec{u} = \frac{1}{|\vec{a}|}\vec{a} = \frac{\vec{a}}{|\vec{a}|}.
\]

Example: Find the unit vector in the direction of \(\vec{a} = -2\vec{i} - 3\vec{j} + \vec{k} \).

\[
|\vec{a}| = \sqrt{(-2)^2 + (-3)^2 + 1^2} = (-2, -3, 1)
\]

\[
= \sqrt{14}
\]

Thus, the unit vector is \(\frac{1}{\sqrt{14}}\vec{a} \) is

\[
= \frac{-2}{\sqrt{14}}\vec{i} + \frac{-3}{\sqrt{14}}\vec{j} + \frac{1}{\sqrt{14}}\vec{k}
\]
Example: If \(\vec{v} \) lies in the first quadrant and make an angle of \(\pi/6 \) with the positive \(x \)-axis and \(|\vec{v}| = 3 \), find \(\vec{v} \) in component form.

\[a = 3 \cdot \cos \frac{\pi}{6} = 3 \cdot \frac{\sqrt{3}}{2} \]
\[b = 3 \cdot \sin \frac{\pi}{6} = 3 \cdot \frac{1}{2} \]

Thus, \(\vec{v} = \left\langle \frac{3\sqrt{3}}{2}, \frac{3}{2} \right\rangle \)

Example: A cart is pulled along a horizontal path with a force of 60 N exerted at an angle of 25° above the horizontal. Find the horizontal and vertical components of the force.

\[F_H = 60 \cos 25^\circ \approx 54.4 \text{ N} \]
\[F_V = 60 \sin 25^\circ \approx 25.4 \text{ N} \]