Line Integral plane in \(\mathbb{R}^2 \)

Recall: §13.3 Suppose a smooth curve \(C \) has the vector equation \(\vec{r}(t) = (x(t), y(t)) \) for \(a \leq t \leq b \). If the curve is traversed exactly once as increases from \(a \) to \(b \), then its length is

\[
L = \int_a^b |\vec{r}'(t)| \, dt = \int_a^b \sqrt{|x'(t)|^2 + |y'(t)|^2} \, dt = \int_a^b \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} \, dt
\]

Definition. If \(f \) is a function defined on \(C \), then the line integral of \(f \) along \(C \) is

\[
\int_C f(x, y) \, ds = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i^*, y_i^*) \Delta s_i
\]

Computation. The line integral of \(f \) along \(C \) can be evaluated as

\[
\int_C f(x, y) \, ds = \int_a^b f(x(t), y(t)) \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} \, dt
\]

Recall: The arc length function \(s(t) \) is the length of the curve between \(\vec{r}(a) \) and \(\vec{r}(t) \) defined by \(s(t) = \int_a^t |\vec{r}'(u)| \, du = \int_a^t \sqrt{\left(\frac{dx}{du}\right)^2 + \left(\frac{dy}{du}\right)^2} \, du \)

From the Fundamental Theorem of Calculus, differentiate both sides, we have

\[
\frac{ds}{dt} = |\vec{r}'(t)| = \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2}
\]
Example 1. Evaluate $\int_C (3 - xy^2)\,ds$, where C is the first quadrant of the unit circle $x^2 + y^2 = 1$.

\[
X = \cos t \quad x'(t) = -\sin t \\
y = \sin t \quad y'(t) = \cos t \\
0 \leq t \leq \frac{\pi}{2}
\]

\[
\int_C 3 - xy^2 \,ds = \int_0^{\frac{\pi}{2}} \left[3 - (\cos t)(\sin^2 t) \right] \sqrt{\left(x'(t)\right)^2 + \left(y'(t)\right)^2} \, dt
\]

\[
= \int_0^{\frac{\pi}{2}} (3 - \sin^2 t \cos t) \, dt
\]

\[
= 3t - \frac{\sin^3 t}{3} \bigg|_0^{\frac{\pi}{2}}
\]

\[
= \frac{3\pi}{2} - \frac{1}{3}
\]

Let $\rho(x, y)$ be the density function on a curve (wire) C. Then the mass of the wire C is

\[
m = \lim_{n \to \infty} \sum_{i=1}^{n} \rho(x_i^*, y_i^*) \Delta s_i = \int_C \rho(x, y)\,ds
\]

The center of mass is (\bar{x}, \bar{y}) computed by

\[
\bar{x} = \frac{1}{m} \int_C x\rho(x, y)\,ds \quad \bar{y} = \frac{1}{m} \int_C y\rho(x, y)\,ds
\]
Suppose \(C \) is a piecewise-smooth curve.

Then,

\[
\int_C f(x, y) ds = \int_{C_1} f(x, y) ds + \int_{C_2} f(x, y) ds + \cdots + \int_{C_n} f(x, y) ds
\]

Example 2. Evaluate \(\int_C 2x \, ds \), where \(C \) is the arc \(C_1 \) of the parabola \(y = x^2 \) from \((0, 0)\) to \((1, 1)\) followed by the line segment \(C_2 \) from \((1, 1)\) to \((2, 1)\).

\[
\int_C 2x \, ds = \int_{C_1} 2x \, ds + \int_{C_2} 2x \, ds
\]

1. \(C_1 \), \(x = t \), \(y = t^2 \)
 \[
 \int_{C_1} 2x \, ds = \int_0^1 2t \sqrt{1 + (2t)^2} \, dt
 = \int_0^1 2t \sqrt{1 + 4t^2} \, dt
 = \int_0^1 (1 + 4t^2)^{1/2} \, dt
 = \frac{1}{4} \cdot \frac{2}{3} (1 + 4t^2)^{3/2} \bigg|_0^1 = \frac{5\sqrt{5} - 1}{6}
 \]

2. \(C_2 \), \(x = t \), \(y = 1 \)
 \[
 \int_{C_2} 2x \, ds = \int_1^2 2t \sqrt{1 + 0} \, dt
 = t^2 \bigg|_1^2 = 4 - 1 = 3
 \]

So,
\[
\int_C 2x \, ds = \frac{5\sqrt{5} - 1}{6} + 3
\]
The line integral of f along C with respect to x is
\[\int_C f(x, y)dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i^*, y_i^*) \Delta x_i \]

The line integral of f along C with respect to y is
\[\int_C f(x, y)dy = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i^*, y_i^*) \Delta y_i \]

Suppose a smooth curve C has the vector equation $\vec{r}(t) = (x(t), y(t))$ for $a \leq t \leq b$. The line integral of f along C with respect to x and y can be evaluated as
\[\int_C f(x, y)dx = \int_a^b f(x(t), y(t))x'(t)dt \]
\[\int_C f(x, y)dy = \int_a^b f(x(t), y(t))y'(t)dt \]

$\int_C f(x, y)ds$ will be called the line integral of f along C with respect to arc length.

Notation:
\[\int_C f(x, y)dx + g(x, y)dy := \int_C f(x, y)dx + \int_C g(x, y)dy \]
Example 3. Evaluate \(\int_C y^2 \, dx - 2x \, dy \), where \(C \) is the line segment from \((-4, -2)\) to \((1, 2)\).

Position vector \(\mathbf{r}_o = \langle -4, -2 \rangle \)

Direction vector \(\mathbf{v} = \mathbf{PQ} = \langle 5, 4 \rangle \)

Line Segment \(C \):

\[\mathbf{r}(t) = \mathbf{r}_o + t \mathbf{v} = \langle -4, -2 \rangle + t \langle 5, 4 \rangle \]

\[x = -4 + 5t \quad 0 \leq t \leq 1 \]

\[y = -2 + 4t \]

\[dx = 5 \, dt \]

\[dy = 4 \, dt \]

\[
\int_C y^2 \, dx - 2x \, dy = \int_0^1 (2+4t)^2 \cdot 5 \, dt - 2(-4+5t) \cdot 4 \, dt
\]

\[
= \int_0^1 5(16t^2 - 24t + 4) + 32 \, dt
\]

\[
= 5 \left(\frac{16}{3} t^3 - 12t^2 + 4t \right) + 32t \bigg|_0^1
\]

\[
= \frac{56}{3}
\]
Example 4. Evaluate $\int_C y^2 \, dx$, where C is the arc of the parabola $x = 2 - y^2$ from $(1, -1)$ to $(-2, 2)$.

$x = 2 - t^2$

$y = t$

$-1 \leq t \leq 2$

$$\int_C y^2 \, dx = \int_{-1}^{2} t^2 \, x(t) \, dt$$

$$= \int_{-1}^{2} t^2 \, (-2t) \, dt$$

$$= \int_{-1}^{2} -2 t^3 \, dt$$

$$= -2 \left. \frac{t^4}{4} \right|_{-1}^{2}$$

$$= - \frac{15}{2}$$
Line integral in space \(\mathbb{R}^3 \).
Suppose a smooth curve \(C \) has the vector equation \(\mathbf{r}'(t) = (x(t), y(t), z(t)) \) for \(a \leq t \leq b \).

Definition. The line integral of \(f \) along \(C \) **with respect to the arc length** is

\[
\int_C f(x, y, z) \, ds = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i^*, y_i^*, z_i^*) \Delta s_i
\]

The line integral of \(f \) along \(C \) **with respect to** \(z \) is

\[
\int_C f(x, y, z) \, dz = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i^*, y_i^*, z_i^*) \Delta z_i
\]

Computation. The line integral of \(f \) along \(C \) with respect to the arc length can be evaluated as

\[
\int_C f(x, y, z) \, ds = \int_a^b f(x(t), y(t), z(t)) \sqrt{\left(\frac{dx}{dt} \right)^2 + \left(\frac{dy}{dt} \right)^2 + \left(\frac{dz}{dt} \right)^2} \, dt
\]

The line integral of \(f \) along \(C \) with respect to \(z \) can be evaluated as

\[
\int_C f(x, y, z) \, dz = \int_a^b f(x(t), y(t), z(t)) z'(t) \, dt
\]
Example 5. Evaluate $\int_C 2x \sin z \, ds$, where C is the helix defined by $x = \sin t$, $y = \cos t$, $z = t$ for $0 \leq t \leq \pi$.

\[
\int_C 2x \sin z \, ds = \int_0^\pi 2 \sin t \sin t \sqrt{x'(t)^2 + y'(t)^2 + z'(t)^2} \, dt
\]

\[
= \int_0^\pi 2 \sin^2 t \sqrt{\cos^2 t + \sin^2 t + 1} \, dt
\]

\[
= \int_0^\pi 2 \sin^2 t \, dt
\]

\[
= \sqrt{2} \int_0^\pi 1 - \cos 2t \, dt
\]

\[
= \sqrt{2} \left(t - \frac{1}{2} \sin 2t \right) \bigg|_0^\pi
\]

\[
= \sqrt{2} \pi
\]
Example 6. Evaluate $\int_C y\,dx + z\,dy + x\,dz$, where C is the union of the line segment C_1 from $(3, 4, 0)$ to $(3, 4, 5)$ and the line segment C_2 from $(3, 4, 5)$ to $(2, 0, 0)$.

For C_1: \[\mathbf{r}(t) = \langle 3, 4, 0 \rangle + t \langle 0, 0, 5 \rangle \]
\[x = 3 \quad y = 4 \quad z = 5t \quad 0 \leq t \leq 1 \]
\[\int_{C_1} y\,dx + z\,dy + x\,dz = \int_0^1 (4 - 4t)(0) + (5t)(0) + (3)(5) \, dt \]
\[= 15 \]

For C_2: \[\mathbf{r}(t) = \langle 3, 4, 5 \rangle + t \langle -1, -4, -5 \rangle \]
\[x = 3 - t \quad y = 4 - 4t \quad z = 5 - 5t \quad 0 \leq t \leq 1 \]
\[\int_{C_2} y\,dx + z\,dy + x\,dz = \int_0^1 (4 - 4t)(-1) + (5 - 5t)(-4) + (3 - t)(-5) \, dt \]
\[= \int_0^1 29t - 39 \, dt \]
\[= \left. \frac{29t^2}{2} - 39t \right|_0^1 = -24.5 \]

So, \[\int_C y\,dx + z\,dy + x\,dz = 15 - 24.5 = -9.5 \]
Line Integrals of Vector Fields.

Calculus 1. The work done by a force function \(f(x) \) in moving a particle from \(a \) to \(b \) along \(x \)-axis is \(W = \int_a^b f(x) \, dx \).

§12.3. The work done by a constant force \(\vec{F} \) along displacement vector \(\vec{D} \) is given by \(W = \vec{F} \cdot \vec{D} \).

Question: How to calculate the work done by a force function \(\vec{F}(x, y, z) \) moving a particle along a curve \(C \)?

\[
\sum_{i=1}^{n} \vec{F}(x_i^*, y_i^*, z_i^*) \cdot [\Delta S_i \cdot \vec{T}(t_i^*)] = \int_C \vec{F} \cdot \vec{T} \, ds
\]
Definition. Let \(\vec{F} \) be a vector field (on \(\mathbb{R}^2 \) or \(\mathbb{R}^3 \)) defined on a curve \(C (\vec{r}(t), a \leq t \leq b) \). Then the line integral of \(\vec{F} \) along \(C \) is

\[
\int_C \vec{F} \cdot \vec{T} \, ds = \int_a^b \vec{F}(\vec{r}(t)) \cdot \vec{r}'(t) \, dt = \int_C \vec{F} \cdot d\vec{r}
\]

where \(\vec{T} \) is the tangent vector at the point \((x, y, z) \in C\).

\[
\vec{T}(t) = \frac{\vec{r}'(t)}{|\vec{r}'(t)|}, \quad ds = |\vec{r}'(t)| \, dt
\]

\[
\int_C \vec{F} \cdot \vec{T} \, ds = \int_C \vec{F} \cdot \frac{\vec{r}'(t)}{|\vec{r}'(t)|} \cdot |\vec{r}'(t)| \, dt
\]

\[
= \int_C \vec{F} \cdot \vec{r}'(t) \, dt.
\]

- If \(\vec{F} = \langle P, Q, R \rangle \), \(\vec{r}(t) = \langle x(t), y(t), z(t) \rangle \)

 then

 \[
 \int_C \vec{F} \cdot \vec{T} \, ds = \int_a^b \vec{F} \cdot \vec{r}'(t) \, dt
 \]

 \[
 = \int_a^b (P \, x'(t) + Q \, y'(t) + R \, z'(t)) \, dt.
 \]

 \[
 = \int_C P \, dx + Q \, dy + R \, dz.
 \]
Example 7. Find the work done by a force field \(\vec{F}(x, y) = \langle y^2, -xy \rangle \) moving a particle along the curve \(C \) given by \(\vec{r}(t) = \langle \sin t, \cos t \rangle \), when \(0 \leq t \leq \pi/2 \).

\[
\int_C \vec{F} \cdot d\vec{r} = \int_0^{\pi/2} \langle y^2, -xy \rangle \cdot \vec{r}'(t) \, dt
\]

\[
= \int_0^{\pi/2} \langle \cos^2 t, -\sin t \cos t \rangle \langle \cos t, -\sin t \rangle \, dt
\]

\[
= \int_0^{\pi/2} \cos^3 t + \sin^2 t \cos t \, dt
\]

\[
= \int_0^{\pi/2} \cos t \, dt
\]

\[
= \left. \sin t \right|_0^{\pi/2}
\]

\[
= 1
\]
Example 8. Evaluate $\int_C \vec{F} \cdot d\vec{r}$, where $\vec{F}(x, y, z) = \langle xy, yz, zx \rangle$ and C is given by $x = t$, $y = t^2$, $z = t^3$ for $0 \leq t \leq 1$.

$$\int_C \vec{F} \cdot d\vec{r} = \int_{\theta}^{1} \vec{F} \cdot \vec{r}'(t) \, dt$$

$$= \int_{0}^{1} \langle t^3, t^5, t^4 \rangle \cdot \langle 1, 2t, 3t^2 \rangle \, dt$$

$$= \int_{0}^{1} t^3 + 5t^6 \, dt$$

$$= \left. \frac{t^4}{4} + \frac{5t^7}{7} \right|_0^1$$

$$= \frac{27}{28}$$