Theorem 1 (The inverse matrix theorem). Let A be an $n \times n$ matrix. Then the next 18 statements are all equivalent (that is, they are either all true or all false).

(1) A is invertible.
(2) There exists an $n \times n$ matrix C such that $C \cdot A = I_n$.
(3) There exists an $n \times n$ matrix D such that $A \cdot D = I_n$.
(4) A^T is an invertible matrix.
(5) A is row-equivalent to I_n.
(6) A has n pivot positions.
(7) The columns of A form a linearly independent set.
(8) The matrix equation $A\vec{x} = \vec{0}$ only has the trivial solution.
(9) The equation $A\vec{x} = \vec{b}$ has a solution for each $\vec{b} \in \mathbb{R}^n$.
(10) The linear transformation $T_A(\vec{x}) = A\vec{x}$ is one-to-one.
(11) The span of the columns of A is \mathbb{R}^n.
(12) The image of T_A is \mathbb{R}^n.

§3
(13.) $\det(A) \neq 0$.

§4
(14.) The columns of A form a basis for \mathbb{R}^n.
(15.) $\text{Col } A = \mathbb{R}^n$.
(16.) $\dim(\text{Col } A) = n$.
(17.) $\text{rank } A = n$.
(18.) $\text{Nul } A = \{\vec{0}\}$.
(19.) $\dim(\text{Nul } A) = 0$.