Cohomology jump loci of configuration spaces

He Wang
(Joint with Alexander Suciu)
Northeastern University

Special Session on
Algebraic Structures Motivated by and Applied to Knot Theory
Spring Eastern Sectional Meeting, Washington, DC

March 8, 2015
Overview
Alexander Modules

- X: connected finite CW-complex.
- $G := \pi_1(X, x_0)$.

The deck transformation group G_{ab} acts on X_{ab}.

The "Crowell exact sequence" of X as $\mathbb{Z}[G_{ab}]$-modules:

$$0 \rightarrow H_1(X_{ab}; \mathbb{Z}) \rightarrow H_1(X_{ab}, F; \mathbb{Z}) \rightarrow I(G_{ab}) \rightarrow 0$$

where $I(G_{ab}) = \ker \epsilon: \mathbb{Z}[G_{ab}] \rightarrow \mathbb{Z}$.

Alexander module $A(G) := H_1(X_{ab}, F; \mathbb{Z})$.

Alexander invariant $B(G) = H_1(X_{ab}; \mathbb{Z}) = G'/G''$, where $G'' = [G', G']$ is the second derived subgroup.

The $\mathbb{Z}[G_{ab}]$-module structure on $B(G)$ is determined by the extension:

$$0 \rightarrow G'/G'' \rightarrow G/G'' \rightarrow G/G' \rightarrow 0$$

with G/G' acting on the cosets of G'' via conjugation:

$$gG' \cdot hG'' = ghg^{-1}G''$$

for $g \in G$, $h \in G'$.

He Wang (Joint with Alexander Suciu)

Cohomology jump loci of configuration spaces

March 8, 2015 3 / 1
Alexander Modules

- X: connected finite CW-complex.
- $G := \pi_1(X, x_0)$.
- $p: X^{ab} \to X$: the maximal abelian cover with fiber F.
- The deck transformation group G_{ab} acts on X^{ab}.

The "Crowell exact sequence" of X as $\mathbb{Z}[G_{ab}]$-modules:

$$0 \to H_1(X^{ab}; \mathbb{Z}) \to H_1(X^{ab}, F; \mathbb{Z}) \to I(G_{ab}) \to 0$$

where $I(G_{ab}) = \ker \epsilon: \mathbb{Z}[G_{ab}] \to \mathbb{Z}$.

Alexander module $A(G) := H_1(X^{ab}, F; \mathbb{Z})$.

Alexander invariant $B(G) = H_1(X^{ab}; \mathbb{Z}) = G' / G''$, where $G'' = [G', G']$ is the second derived subgroup.

The $\mathbb{Z}[G_{ab}]$-module structure on $B(G)$ is determined by the extension

$$0 \to G'/G'' \to G/G' \to G/G'' \to 0$$

with G/G' acting on the cosets of G'' via conjugation: $gG' \cdot hG'' = ghg^{-1}G''$, for $g \in G$, $h \in G'$.
Alexander Modules

- X: connected finite CW-complex.
- $G := \pi_1(X, x_0)$.
- $p: X^{ab} \to X$: the maximal abelian cover with fiber F.
- The deck transformation group G_{ab} acts on X^{ab}.
- The “Crowell exact sequence” of X as $\mathbb{Z}[G_{ab}]$-modules:

\[0 \to H_1(X^{ab}; \mathbb{Z}) \to H_1(X^{ab}, F; \mathbb{Z}) \to I(G_{ab}) \to 0 \]

where $I(G_{ab}) = \ker \epsilon: \mathbb{Z}[G_{ab}] \to \mathbb{Z}$.
Alexander Modules

- X: connected finite CW-complex.
- $G := \pi_1(X, x_0)$.
- $p: X^{ab} \to X$: the maximal abelian cover with fiber F.
- The deck transformation group G_{ab} acts on X^{ab}.
- The “Crowell exact sequence” of X as $\mathbb{Z}[G_{ab}]$-modules:

$$0 \to H_1(X^{ab}; \mathbb{Z}) \to H_1(X^{ab}, F; \mathbb{Z}) \to I(G_{ab}) \to 0$$

where $I(G_{ab}) = \ker \epsilon: \mathbb{Z}[G_{ab}] \to \mathbb{Z}$.

- Alexander module $A(G) := H_1(X^{ab}, F; \mathbb{Z})$.
- Alexander invariant $B(G) = H_1(X^{ab}; \mathbb{Z}) = G'/G''$, where $G'' = [G', G']$ is the second derived subgroup.
Alexander Modules

- X: connected finite CW-complex.
- $G := \pi_1(X, x_0)$.
- $p: X^{ab} \to X$: the maximal abelian cover with fiber F.
- The deck transformation group G_{ab} acts on X^{ab}.
- The “Crowell exact sequence” of X as $\mathbb{Z}[G_{ab}]$-modules:

$$0 \longrightarrow H_1(X^{ab}; \mathbb{Z}) \longrightarrow H_1(X^{ab}, F; \mathbb{Z}) \longrightarrow I(G_{ab}) \longrightarrow 0$$

where $I(G_{ab}) = \ker \epsilon: \mathbb{Z}[G_{ab}] \to \mathbb{Z}$.

- **Alexander module** $A(G) := H_1(X^{ab}, F; \mathbb{Z})$.
- **Alexander invariant** $B(G) = H_1(X^{ab}; \mathbb{Z}) = G'/G''$, where $G'' = [G', G']$ is the second derived subgroup.
- The $\mathbb{Z}[G_{ab}]$-module structure on $B(G)$ is determined by the extension

$$0 \to G'/G'' \to G/G'' \to G/G' \to 0.$$

with G/G' acting on the cosets of G'' via conjugation:

$$gG' \cdot hG'' = ghg^{-1}G'', \text{ for } g \in G, \ h \in G'.$
Chen Lie algebra

- The lower central series G: $\Gamma_1 G = G$, $\Gamma_{k+1} G = [\Gamma_k G, G]$, $k \geq 1$.
- The Chen Lie algebra of a group G is defined to be
 \[
 \text{gr}(G / G''; k) := \bigoplus_{k \geq 1} (\Gamma_k (G / G'') / \Gamma_{k+1} (G / G'')) \otimes_{\mathbb{Z}} k.
 \]
- The quotient map $h: G \to G / G''$ induces $\text{gr}(G; k) \to \text{gr}(G / G''; k)$.
Chen Lie algebra

- The lower central series \(G : \Gamma_1 G = G, \Gamma_{k+1} G = [\Gamma_k G, G], k \geq 1 \).
- The **Chen Lie algebra** of a group \(G \) is defined to be
 \[
 \text{gr}(G/G''; k) := \bigoplus_{k \geq 1} (\Gamma_k (G/G'')) / \Gamma_{k+1} (G/G'') \otimes \mathbb{Z} k.
 \]
- The quotient map \(h : G \rightarrow G/G'' \) induces \(\text{gr}(G; k) \rightarrow \text{gr}(G/G''; k) \).
- The **Chen ranks** of \(G \) are defined as \(\theta_k (G) := \text{rank}(\text{gr}_k (G/G''; k)) \).
- \(\theta_k (F_n) = (k - 1) \binom{n + k - 2}{k} \), \(k \geq 2 \). [Chen51]
Chen Lie algebra

- The lower central series G: $\Gamma_1 G = G$, $\Gamma_{k+1} G = [\Gamma_k G, G]$, $k \geq 1$.
- The Chen Lie algebra of a group G is defined to be
 \[\text{gr}(G/G''; \mathbb{k}) := \bigoplus_{k \geq 1} (\Gamma_k(G/G'')/\Gamma_{k+1}(G/G'')) \otimes_{\mathbb{Z}} \mathbb{k}. \]

- The quotient map $h: G \rightarrow G/G''$ induces $\text{gr}(G; \mathbb{k}) \rightarrow \text{gr}(G/G''; \mathbb{k})$.
- The Chen ranks of G are defined as $\theta_k(G) := \text{rank}(\text{gr}_k(G/G''; \mathbb{k}))$.
- $\theta_k(F_n) = (k - 1)(\binom{n+k-2}{k})$, $k \geq 2$. [Chen51]
- The module $B(G)$ has an I-adic filtration $\{I^k B(G)\}_{k \geq 0}$.
- $\text{gr}(B(G)) = \bigoplus_{k \geq 0} I^k B(G)/I^{k+1} B(G)$ is a graded $\text{gr}(\mathbb{Z}[G_{\text{ab}}])$-module.
Chen Lie algebra

- The lower central series G: $\Gamma_1 G = G$, $\Gamma_{k+1} G = [\Gamma_k G, G]$, $k \geq 1$.
- The Chen Lie algebra of a group G is defined to be
 \[\text{gr}(G/G''; k) := \bigoplus_{k \geq 1} (\Gamma_k (G/G'') / \Gamma_{k+1} (G/G'')) \otimes_{\mathbb{Z}} k. \]
- The quotient map $h: G \to G/G''$ induces $\text{gr}(G; k) \to \text{gr}(G/G''; k)$.
- The Chen ranks of G are defined as $\theta_k(G) := \text{rank}(\text{gr}_k (G/G''; k))$.
- $\theta_k(F_n) = (k - 1) \binom{n+k-2}{k}$, $k \geq 2$. [Chen51]
- The module $B(G)$ has an I-adic filtration \(\{I^k B(G)\}_{k \geq 0} \).
- $\text{gr}(B(G)) = \bigoplus_{k \geq 0} I^k B(G) / I^{k+1} B(G)$ is a graded $\text{gr}(\mathbb{Z}[G_{ab}])$-module.

Proposition (Massey 80)

For each $k \geq 2$, there exists an isomorphism
\[\text{gr}_k (G/G'') \cong \text{gr}_{k-2} (B(G)). \]
Alexander varieties

Definition (Libgober 1992)

The *Alexander variety* of X (over \mathbb{C})

$$W^i_d(X,\mathbb{C}) = V(E_{d-1}(H_i(X^{ab},\mathbb{C})))$$

is the subvariety of $\mathbb{T}(X)$, defined by the Fitting ideals.
Alexander varieties

Definition (Libgober 1992)

The *Alexander variety* of X (over \mathbb{C})

$$\mathcal{W}_d^i(X, \mathbb{C}) = V(E_{d-1}(H_i(X^{ab}, \mathbb{C})))$$

is the subvariety of $\mathbb{T}(X)$, defined by the Fitting ideals.

- The *character variety* $\mathbb{T}(X) := \text{Hom}(G, \mathbb{C}^*) = \text{Hom}(G_{ab}, \mathbb{C}^*)$ is an algebraic group, with multiplication $f_1 \circ f_2(g) = f_1(g)f_2(g)$ and identity $\text{id}(g) = 1$ for $g \in G$ and $f_i \in \text{Hom}(G, \mathbb{C}^*)$.
The **Alexander variety** of X (over \mathbb{C})

$$W^i_d(X, \mathbb{C}) = V(E_{d-1}(H_i(X^{ab}, \mathbb{C})))$$

is the subvariety of $\mathbb{T}(X)$, defined by the Fitting ideals.

- The **character variety** $\mathbb{T}(X) := \text{Hom}(G, \mathbb{C}^*) = \text{Hom}(G_{ab}, \mathbb{C}^*)$ is an algebraic group, with multiplication $f_1 \circ f_2(g) = f_1(g)f_2(g)$ and identity $\text{id}(g) = 1$ for $g \in G$ and $f_i \in \text{Hom}(G, \mathbb{C}^*)$.
- The i-th **Fitting ideal** of a $\mathbb{C}[G_{ab}]$-module is the ideal in $\mathbb{C}[G_{ab}]$ generated by the co-dimension i minors of the presentation matrix.
Alexander varieties

Definition (Libgober 1992)

The **Alexander variety** of X (over \mathbb{C})

\[\mathcal{W}_d^i(X, \mathbb{C}) = V(E_{d-1}(H_i(X^{ab}, \mathbb{C}))) \]

is the subvariety of $\mathbb{T}(X)$, defined by the Fitting ideals.

- The **character variety** $\mathbb{T}(X) := \text{Hom}(G, \mathbb{C}^*) = \text{Hom}(G_{ab}, \mathbb{C}^*)$ is an algebraic group, with multiplication $f_1 \circ f_2(g) = f_1(g)f_2(g)$ and identity $\text{id}(g) = 1$ for $g \in G$ and $f_i \in \text{Hom}(G, \mathbb{C}^*)$.
- The i-th **Fitting ideal** of a $\mathbb{C}[G_{ab}]$-module is the ideal in $\mathbb{C}[G_{ab}]$ generated by the co-dimension i minors of the presentation matrix.
- $\mathcal{W}_d^1(G, \mathbb{C}) = V(E_{d-1}(B(G) \otimes \mathbb{C})) = V(E_d(A(G) \otimes \mathbb{C}))$ for $d \geq 1$.

He Wang (Joint with Alexander Suciu) Cohomology jump loci of configuration spaces March 8, 2015 5 / 1
Alexander varieties

Definition (Libgober 1992)

The *Alexander variety* of X (over \mathbb{C})

$$\mathcal{W}_d^i(X, \mathbb{C}) = V(E_{d-1}(H_i(X^{ab}, \mathbb{C})))$$

is the subvariety of $\mathbb{T}(X)$, defined by the Fitting ideals.

- The *character variety* $\mathbb{T}(X) := \text{Hom}(G, \mathbb{C}^*) = \text{Hom}(G_{ab}, \mathbb{C}^*)$ is an algebraic group, with multiplication $f_1 \circ f_2(g) = f_1(g)f_2(g)$ and identity $\text{id}(g) = 1$ for $g \in G$ and $f_i \in \text{Hom}(G, \mathbb{C}^*)$.

- The i-th *Fitting ideal* of a $\mathbb{C}[G_{ab}]$-module is the ideal in $\mathbb{C}[G_{ab}]$ generated by the co-dimension i minors of the presentation matrix.

- $\mathcal{W}_d^1(G, \mathbb{C}) = V(E_{d-1}(B(G) \otimes \mathbb{C})) = V(E_d(A(G) \otimes \mathbb{C}))$ for $d \geq 1$.

- $\mathcal{W}_1^1(T^n, \mathbb{C}) = \{1\}.$
Alexander varieties

Definition (Libgober 1992)

The *Alexander variety* of X (over \mathbb{C})

$$\mathcal{W}_d^i(X, \mathbb{C}) = V(E_{d-1}(H_i(X^{ab}, \mathbb{C})))$$

is the subvariety of $\mathbb{T}(X)$, defined by the Fitting ideals.

- The *character variety* $\mathbb{T}(X) := \text{Hom}(G, \mathbb{C}^*) = \text{Hom}(G_{ab}, \mathbb{C}^*)$ is an algebraic group, with multiplication $f_1 \circ f_2(g) = f_1(g)f_2(g)$ and identity $\text{id}(g) = 1$ for $g \in G$ and $f_i \in \text{Hom}(G, \mathbb{C}^*)$.

- The i-th *Fitting ideal* of a $\mathbb{C}[G_{ab}]$-module is the ideal in $\mathbb{C}[G_{ab}]$ generated by the co-dimension i minors of the presentation matrix.

- $\mathcal{W}_d^1(G, \mathbb{C}) = V(E_{d-1}(B(G) \otimes \mathbb{C})) = V(E_d(A(G) \otimes \mathbb{C}))$ for $d \geq 1$.

- $\mathcal{W}_1^1(T^n, \mathbb{C}) = \{1\}$.

- $\mathcal{W}_d^1(\Sigma_g, \mathbb{C}) = (\mathbb{C}^*)^{2g}$ for $g > 1$, $d < 2g - 1$.
Example (Borromean rings)

Let X be the complement in S^3 of the Borromean rings:

A presentation for the fundamental group

$$G = \pi_1(X) = \langle x, y, z \mid zyz^{-1}xzy^{-1}z^{-1} = yxy^{-1}, xzx^{-1}yxz^{-1}x = zyz^{-1} \rangle.$$
Example (Borromean rings)

Let X be the complement in S^3 of the Borromean rings: A presentation for the fundamental group

$G = \pi_1(X) = \langle x, y, z \mid zyz^{-1}xzy^{-1}z^{-1} = yxy^{-1}, xzx^{-1}yxz^{-1}x = zyz^{-1} \rangle$.

- $\mathbb{C}[G_{ab}] = \mathbb{C}[t_1^{\pm 1}, t_2^{\pm 1}, t_3^{\pm 1}]$.

Example (Borromean rings)

Let X be the complement in S^3 of the Borromean rings:

A presentation for the fundamental group $G = \pi_1(X) = \langle x, y, z | zyz^{-1}xzy^{-1}z^{-1} = yxy^{-1}, xzx^{-1}yxz^{-1}x = zyz^{-1} \rangle$.

- $\mathbb{C}[G_{ab}] = \mathbb{C}[t_1^{\pm 1}, t_2^{\pm 1}, t_3^{\pm 1}]$.
- $A(G) = \text{coker} \begin{pmatrix}
0 & (t_3 - 1)(1 - t_1) & (1 - t_1)(1 - t_2) \\
(t_1 - 1)(1 - t_2) & 0 & (t_1 - 1)(1 - t_2)
\end{pmatrix}$
Example (Borromean rings)

Let X be the complement in S^3 of the Borromean rings:

A presentation for the fundamental group

$$G = \pi_1(X) = \langle x, y, z \mid zyz^{-1}xzy^{-1}z^{-1} = yxy^{-1}, xzx^{-1}yxz^{-1}x = zyz^{-1} \rangle.$$

- $\mathbb{C}[G_{ab}] = \mathbb{C}[t_1^{\pm 1}, t_2^{\pm 1}, t_3^{\pm 1}]$.
- $A(G) = \text{coker } \begin{pmatrix} 0 & (t_3 - 1)(1 - t_1) & (1 - t_1)(1 - t_2) \\ (1 - t_2)(1 - t_3) & 0 & (t_1 - 1)(1 - t_2) \\ t_3 - 1 & 0 & 0 \end{pmatrix}$.
- $B(G) = \text{coker } \begin{pmatrix} 0 & t_2 - 1 & 0 \\ 0 & 0 & t_1 - 1 \end{pmatrix}$.

He Wang (Joint with Alexander Suciu)

Cohomology jump loci of configuration spaces

March 8, 2015 6 / 1
Example (Borromean rings)

Let X be the complement in \mathbb{S}^3 of the Borromean rings:

A presentation for the fundamental group

$$G = \pi_1(X) = \langle x, y, z \mid zyz^{-1}xzy^{-1}z^{-1} = yxy^{-1}, xzx^{-1}yxz^{-1}x = zyz^{-1} \rangle.$$

- $\mathbb{C}[G_{ab}] = \mathbb{C}[t_1^{\pm1}, t_2^{\pm1}, t_3^{\pm1}].$
- $A(G) = \text{coker} \begin{pmatrix} 0 & (t_3 - 1)(1 - t_1) & (1 - t_1)(1 - t_2) \\ (1 - t_2)(1 - t_3) & 0 & (t_1 - 1)(1 - t_2) \end{pmatrix}$
- $B(G) = \text{coker} \begin{pmatrix} t_3 - 1 & 0 & 0 \\ 0 & t_2 - 1 & 0 \\ 0 & 0 & t_1 - 1 \end{pmatrix}$
- The Alexander variety
 $$\mathcal{W}_1^1(X, \mathbb{C}) = \{ t_1 = 1 \} \cup \{ t_2 = 1 \} \cup \{ t_3 = 1 \} = (\mathbb{C}^*)^2 \cup (\mathbb{C}^*)^2 \cup (\mathbb{C}^*)^2;$$
 $$\mathcal{W}_2^1(X, \mathbb{C}) = \{ t_1 = t_2 = 1 \} \cup \{ t_2 = t_3 = 1 \} \cup \{ t_3 = t_1 = 1 \};$$
 $$\mathcal{W}_3^1(X, \mathbb{C}) = \{ 1 \}.$$
The characteristic varieties

- The **rank 1 local system** on X is a 1-dimensional \mathbb{C}-vector space \mathbb{C}_ρ with a right $\mathbb{C}G$-module structure $\mathbb{C}_\rho \times G \to \mathbb{C}_\rho$ given by $\rho(g) \cdot a$ for $a \in \mathbb{C}_\rho$ and $g \in G$ for $\rho \in \text{Hom}(G, \mathbb{C}^*)$.

$H_i(X, \mathbb{C}_\rho) := H_i(\mathbb{C}^*(\tilde{X}, \mathbb{C}) \otimes \mathbb{C}_G \mathbb{C}_\rho)$ the homology group of X with coefficient \mathbb{C}_ρ.

Definition

The **characteristic varieties** of X over \mathbb{C} are the Zariski closed subsets $V_i^{C}(X) = \{ \rho \in T(X) = \text{Hom}(G, \mathbb{C}^*) | \dim \mathbb{C}_\rho \geq d \}$ for $i \geq 1$ and $d \geq 1$.

Proposition (Papadima, Suciu10)

$q \bigcup_{i=0}^{\infty} V_i^{1}(X) = q \bigcup_{i=0}^{\infty} W_i^{1}(X)$.

He Wang (Joint with Alexander Suciu) Cohomology jump loci of configuration spaces March 8, 2015 7 / 1
The characteristic varieties

- The **rank 1 local system** on X is a 1-dimensional \mathbb{C}-vector space \mathbb{C}_ρ with a right $\mathbb{C}G$-module structure $\mathbb{C}_\rho \times G \to \mathbb{C}_\rho$ given by $\rho(g) \cdot a$ for $a \in \mathbb{C}_\rho$ and $g \in G$ for $\rho \in \text{Hom}(G, \mathbb{C}^*)$.

- $H_i(X, \mathbb{C}_\rho) := H_i(C_*(\tilde{X}, \mathbb{C}) \otimes_{\mathbb{C}G} \mathbb{C}_\rho)$ the homology group of X with coefficient \mathbb{C}_ρ.

He Wang (Joint with Alexander Suciu) Cohomology jump loci of configuration spaces March 8, 2015 7 / 1
The characteristic varieties

- The rank 1 local system on X is a 1-dimensional \mathbb{C}-vector space \mathbb{C}_ρ with a right $\mathbb{C}G$-module structure $\mathbb{C}_\rho \times G \rightarrow \mathbb{C}_\rho$ given by $\rho(g) \cdot a$ for $a \in \mathbb{C}_\rho$ and $g \in G$ for $\rho \in \text{Hom}(G, \mathbb{C}^*)$.
- $H_i(X, \mathbb{C}_\rho) := H_i(\mathbb{C}_*(\tilde{X}, \mathbb{C}) \otimes_{\mathbb{C}G} \mathbb{C}_\rho)$ the homology group of X with coefficient \mathbb{C}_ρ.

Definition

The characteristic varieties of X over \mathbb{C} are the Zariski closed subsets

$$\mathcal{V}_d^i(X, \mathbb{C}) = \{ \rho \in \mathbb{T}(X) = \text{Hom}(G, \mathbb{C}^*) \mid \dim_{\mathbb{C}} H_i(X, \mathbb{C}_\rho) \geq d \}$$

for $i \geq 1$ and $d \geq 1$.
The characteristic varieties

- The **rank 1 local system** on X is a 1-dimensional \mathbb{C}-vector space \mathbb{C}_ρ with a right $\mathbb{C}G$-module structure $\mathbb{C}_\rho \times G \to \mathbb{C}_\rho$ given by $\rho(g) \cdot a$ for $a \in \mathbb{C}_\rho$ and $g \in G$ for $\rho \in \text{Hom}(G, \mathbb{C}^*)$.
- $H_i(X, \mathbb{C}_\rho) := H_i(C_*(\tilde{X}, \mathbb{C}) \otimes_{\mathbb{C}G} \mathbb{C}_\rho)$ the homology group of X with coefficient \mathbb{C}_ρ.

Definition

The **characteristic varieties** of X over \mathbb{C} are the Zariski closed subsets

$$V^i_d(X, \mathbb{C}) = \{ \rho \in T(X) = \text{Hom}(G, \mathbb{C}^*) \mid \dim_{\mathbb{C}} H_i(X, \mathbb{C}_\rho) \geq d \}$$

for $i \geq 1$ and $d \geq 1$.

Proposition (Papadima,Suciu10)

$$\bigcup_{i=0}^{q} V^i_1(X, \mathbb{C}) = \bigcup_{i=0}^{q} \mathcal{W}^i_1(X, \mathbb{C}).$$
The resonance varieties

- $A = H^*(G, \mathbb{C})$. For each $a \in A^1$, we have $a^2 = 0$.
The resonance varieties

- $A = H^* (G, \mathbb{C})$. For each $a \in A^1$, we have $a^2 = 0$.
- Define a cochain complex of finite-dimensional \mathbb{C}-vector spaces,

$$(A, a) : A^0 \xrightarrow{a \cup -} A^1 \xrightarrow{a \cup -} A^2 \xrightarrow{a \cup -} \cdots ,$$

with differentials given by left-multiplication by a.

He Wang (Joint with AlexanderSuciu)

Cohomology jump loci of configuration spaces

March 8, 2015 8 / 1
The resonance varieties

- $A = H^*(G, \mathbb{C})$. For each $a \in A^1$, we have $a^2 = 0$.
- Define a cochain complex of finite-dimensional \mathbb{C}-vector spaces,

$$ (A, a) : A^0 \xrightarrow{a \cup -} A^1 \xrightarrow{a \cup -} A^2 \xrightarrow{a \cup -} \cdots , $$

with differentials given by left-multiplication by a.

Definition

The *resonance varieties* of G are the homogeneous subvarieties of A^1

$$ \mathcal{R}^i_d(G, \mathbb{C}) = \{ a \in A^1 | \dim_{\mathbb{C}} H^i(A; a) \geq d \}, $$

defined for all integers $i \geq 1$ and $d \geq 1$.
The resonance varieties

- \(A = H^*(G, \mathbb{C}) \). For each \(a \in A^1 \), we have \(a^2 = 0 \).
- Define a cochain complex of finite-dimensional \(\mathbb{C} \)-vector spaces,

\[
(A, a) : A^0 \overset{a}{\longrightarrow} A^1 \overset{a}{\longrightarrow} A^2 \overset{a}{\longrightarrow} \cdots ,
\]

with differentials given by left-multiplication by \(a \).

Definition

The *resonance varieties* of \(G \) are the homogeneous subvarieties of \(A^1 \)

\[
\mathcal{R}^i_d(G, \mathbb{C}) = \{ a \in A^1 \mid \dim_{\mathbb{C}} H^i(A; a) \geq d \},
\]

defined for all integers \(i \geq 1 \) and \(d \geq 1 \).

- \(\mathcal{R}^1_1(T^n, \mathbb{C}) = \{0\} \);
- \(\mathcal{R}^1_1(\Sigma_g, \mathbb{C}) = \mathbb{C}^{2g}, \ g \geq 2 \).
1-Formality and Tangent Cone Theorem

- A space X is 1-formal if there exists a cdga morphism from the minimal model $\mathcal{M}(X)$ to $(H^*(X, \mathbb{Q}), 0)$ inducing isomorphism in cohomology of degree 1 and monomorphism in degree 2.

Example (Borromean link again)

$$R_1 d(G, C) = H_1(X; C) = C^3$$ for $d \leq 3$.

$$TC_1(V_1 d(G, C)) = \{x_1 = 0\} \cup \{x_2 = 0\} \cup \{x_3 = 0\}.$$

$\Rightarrow X$ is not 1-formal.
1-Formality and Tangent Cone Theorem

- A space X is **1-formal** if there exists a cdga morphism from the minimal model $\mathcal{M}(X)$ to $(H^*(X, \mathbb{Q}), 0)$ inducing isomorphism in cohomology of degree 1 and monomorphism in degree 2.
- A group G is **1-formal** if the Eilenberg-MacLane space $K(G, 1)$ is 1-formal.

Example (Borromean link again): $R^1d(G, C) = H^1(G, C) = C^3$ for $d \leq 3$.

$TC^1(V^1_1(G, C)) = \{x_1 = 0\} \cup \{x_2 = 0\} \cup \{x_3 = 0\}$.

$\Rightarrow X$ is not 1-formal.
1-Formality and Tangent Cone Theorem

- A space X is 1-formal if there exists a cdga morphism from the minimal model $\mathcal{M}(X)$ to $(H^*(X, \mathbb{Q}), 0)$ inducing isomorphism in cohomology of degree 1 and monomorphism in degree 2.
- A group G is 1-formal if the Eilenberg-MacLane space $K(G, 1)$ is 1-formal.

Theorem (Dimca, Papadima, Suciu 09)

If G is 1-formal, then the tangent cone $TC_1(V^1_d(G, \mathbb{C}))$ equals $R^1_d(G, \mathbb{C})$. Moreover, $R^1_d(G, \mathbb{C})$ is a union of rationally defined linear subspaces of $H^1(G, \mathbb{C})$.

⇒ X is not 1-formal.
1-Formality and Tangent Cone Theorem

- A space X is 1-formal if there exists a cdga morphism from the minimal model $\mathcal{M}(X)$ to $(H^*(X, \mathbb{Q}), 0)$ inducing isomorphism in cohomology of degree 1 and monomorphism in degree 2.
- A group G is 1-formal if the Eilenberg-MacLane space $K(G, 1)$ is 1-formal.

Theorem (Dimca, Papadima, Suciu 09)

If G is 1-formal, then the tangent cone $TC_1(V^1_d(G, \mathbb{C}))$ equals $R^1_d(G, \mathbb{C})$. Moreover, $R^1_d(G, \mathbb{C})$ is a union of rationally defined linear subspaces of $H^1(G, \mathbb{C})$.

Example (Borromean link again)

- $R^1_d(X, \mathbb{C}) = H^1(X; \mathbb{C}) = \mathbb{C}^3$ for $d \leq 3$.
1-Formality and Tangent Cone Theorem

- A space X is **1-formal** if there exists a cdga morphism from the minimal model $\mathcal{M}(X)$ to $(H^*(X, \mathbb{Q}), 0)$ inducing isomorphism in cohomology of degree 1 and monomorphism in degree 2.
- A group G is **1-formal** if the Eilenberg-MacLane space $K(G, 1)$ is 1-formal.

Theorem (Dimca, Papadima, Suciu 09)

*If G is 1-formal, then the tangent cone $\text{TC}_1(\mathcal{V}_d^1(G, \mathbb{C}))$ equals $\mathcal{R}_d^1(G, \mathbb{C})$. Moreover, $\mathcal{R}_d^1(G, \mathbb{C})$ is a union of rationally defined linear subspaces of $H^1(G, \mathbb{C})$.***

Example (Borromean link again)

- $\mathcal{R}_d^1(X, \mathbb{C}) = H^1(X; \mathbb{C}) = \mathbb{C}^3$ for $d \leq 3$.
- $\text{TC}_1(\mathcal{V}_1^1(G, \mathbb{C})) = \{x_1 = 0\} \cup \{x_2 = 0\} \cup \{x_3 = 0\}$.
1-Formality and Tangent Cone Theorem

- A space X is **1-formal** if there exists a cdga morphism from the minimal model $\mathcal{M}(X)$ to $(H^*(X, \mathbb{Q}), 0)$ inducing isomorphism in cohomology of degree 1 and monomorphism in degree 2.
- A group G is **1-formal** if the Eilenberg-MacLane space $K(G, 1)$ is 1-formal.

Theorem (Dimca, Papadima, Suciu 09)

If G is 1-formal, then the tangent cone $TC_1(\mathcal{V}_d^1(G, \mathbb{C}))$ equals $\mathcal{R}_d^1(G, \mathbb{C})$. Moreover, $\mathcal{R}_d^1(G, \mathbb{C})$ is a union of rationally defined linear subspaces of $H^1(G, \mathbb{C})$.

Example (Borromean link again)

- $\mathcal{R}_d^1(X, \mathbb{C}) = H^1(X; \mathbb{C}) = \mathbb{C}^3$ for $d \leq 3$.
- $TC_1(\mathcal{V}_1^1(G, \mathbb{C})) = \{x_1 = 0\} \cup \{x_2 = 0\} \cup \{x_3 = 0\}$.
 \[\Rightarrow X \text{ is not 1-formal.} \]
The configuration spaces
Let M be a connected manifold with $\dim_{\mathbb{R}} M \geq 2$. The configuration space

$$\mathcal{F}(M, n) = \{(x_1, \cdots, x_n) \in M \times \cdots \times M \mid x_i \neq x_j \text{ for } i \neq j\}.$$

There is a free action of S_n on $\mathcal{F}(M, n)$ by permutation of coordinates, with orbit space $\mathcal{C}(M, n) = \mathcal{F}(M, n)/S_n$.

The configuration spaces

Let M be a connected manifold with $\dim_{\mathbb{R}} M \geq 2$. The configuration space

$$ \mathcal{F}(M, n) = \{(x_1, \cdots, x_n) \in M \times \cdots \times M \mid x_i \neq x_j \text{ for } i \neq j\}. $$

There is a free action of S_n on $\mathcal{F}(M, n)$ by permutation of coordinates, with orbit space $\mathcal{C}(M, n) = \mathcal{F}(M, n)/S_n$.

- Example: The braid group $B_n = \pi_1(C(\mathbb{R}^2, n))$ and pure braid group $P_n = \pi_1(\mathcal{F}(\mathbb{R}^2, n))$ with $1 \to P_n \to B_n \xrightarrow{\rho} S_n \to 1$.

Proposition (Cohen, Suciu 95)

The Chen ranks of P_n are given by

$$ \theta_1(P_n) = \binom{n}{2}; \quad \theta_2(P_n) = \binom{n}{3}; \quad \theta_k(P_n) = \binom{k-1}{n+1}, $$

for $k \geq 3$.
The configuration spaces
Let M be a connected manifold with $\dim_{\mathbb{R}} M \geq 2$. The configuration space

$$\mathcal{F}(M, n) = \{(x_1, \cdots, x_n) \in M \times \cdots \times M \mid x_i \neq x_j \text{ for } i \neq j\}.$$

There is a free action of S_n on $\mathcal{F}(M, n)$ by permutation of coordinates, with orbit space $\mathcal{C}(M, n) = \mathcal{F}(M, n)/S_n$.

- **Example:** The braid group $B_n = \pi_1(\mathcal{C}(\mathbb{R}^2, n))$ and pure braid group $P_n = \pi_1(\mathcal{F}(\mathbb{R}^2, n))$ with $1 \rightarrow P_n \rightarrow B_n \overset{\rho}{\rightarrow} S_n \rightarrow 1$.

Proposition (Cohen, Suciu 95)

The Chen ranks of P_n are given by

$$\theta_1(P_n) = \binom{n}{2}; \quad \theta_2(P_n) = \binom{n}{3}; \quad \theta_k(P_n) = (k - 1)\binom{n + 1}{4}, \text{ for } k \geq 3$$
The configuration spaces

Let M be a connected manifold with $\dim_{\mathbb{R}} M \geq 2$. The configuration space

$$\mathcal{F}(M, n) = \{ (x_1, \cdots, x_n) \in M \times \cdots \times M \mid x_i \neq x_j \text{ for } i \neq j \}.$$

There is a free action of S_n on $\mathcal{F}(M, n)$ by permutation of coordinates, with orbit space $\mathcal{C}(M, n) = \mathcal{F}(M, n)/S_n$.

- Example: The braid group $B_n = \pi_1(\mathcal{C}(\mathbb{R}^2, n))$ and pure braid group $P_n = \pi_1(\mathcal{F}(\mathbb{R}^2, n))$ with $1 \to P_n \to B_n \xrightarrow{\rho} S_n \to 1$.

Proposition (Cohen, Suciu 95)

The Chen ranks of P_n are given by

$$\theta_1(P_n) = \binom{n}{2}; \quad \theta_2(P_n) = \binom{n}{3}; \quad \theta_k(P_n) = (k - 1) \binom{n + 1}{4}, \text{ for } k \geq 3$$

Corollary

P_n is not isomorphic to $\Pi_n = F_1 \times \cdots \times F_{n-1}$ for $n \geq 4$.

He Wang (Joint with Alexander Suciu)
Cohomology jump loci of configuration spaces
March 8, 2015
10 / 1
The pure braid groups on Riemann surface

- \(P_{g,n} = \pi_1(\mathcal{F}(\Sigma_g, n)) \), where \(\mathcal{F}(\Sigma_g, n) \) is the configuration of \(\Sigma_g \), which is a smooth compact complex curve of genus \(g \) (\(g \geq 1 \)).
The pure braid groups on Riemann surface

- $P_{g,n} = \pi_1(\mathcal{F}(\Sigma_g, n))$, where $\mathcal{F}(\Sigma_g, n)$ is the configuration of Σ_g, which is a smooth compact complex curve of genus g ($g \geq 1$).

Proposition (Dimca, Papadima, Suciu 09)

The (first) resonance variety of $P_{1,n}$ is

$$\mathcal{R}_1^1(P_{1,n}, \mathbb{C}) = \left\{ (x, y) \in \mathbb{C}^n \times \mathbb{C}^n \mid \sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i = 0, x_i y_j - x_j y_i = 0, \text{ for } 1 < i < j \leq n \right\}$$
The pure braid groups on Riemann surface

- \(P_{g,n} = \pi_1(\mathcal{F}(\Sigma_g, n)) \), where \(\mathcal{F}(\Sigma_g, n) \) is the configuration of \(\Sigma_g \), which is a smooth compact complex curve of genus \(g \) \((g \geq 1)\).

Proposition (Dimca, Papadima, Suciu 09)

The (first) resonance variety of \(P_{1,n} \) is

\[
\mathcal{R}_1^{1}(P_{1,n}, \mathbb{C}) = \left\{ (x, y) \in \mathbb{C}^n \times \mathbb{C}^n \mid \begin{align*}
\sum_{i=1}^{n} x_i &= \sum_{i=1}^{n} y_i = 0 \\
 x_i y_j - x_j y_i &= 0, \text{ for } 1 < i < j \leq n
\end{align*} \right\}
\]

Corollary

\(P_{n,1} \) is not 1-formal for \(n \geq 3 \).
The pure virtual braid groups

- The virtual braids come from the virtual knot theory by Kauffman.

The generators σ_i and s_i of the virtual braid groups vB_n are

$$1_i - 1_i + 1_i + 2 \cdots \cdots \circ 1_i - 1_i + 1_i + 2 \cdots \cdots$$

The relations for vB_n include the relations for B_n and S_n, and

$$\{ \sigma_i s_j = s_j \sigma_i, \mid i - j \mid \geq 2 \}, \ s_i s_{i+1} \sigma_i = \sigma_i + 1 s_i s_{i+1}, \ i = 1, \ldots, n-2.$$ (1)

$1 \rightarrow vP_n \rightarrow vB_n \rho \rightarrow S_n \rightarrow 1.$

The pure virtual braid groups vP_n has presentation [Bardakov04]

$$\langle x_{ij}, (1 \leq i \neq j \leq n) \bigg| \left| x_{ij} x_{ik} x_{jk} = x_{jk} x_{ik} x_{ij} ; x_{ij} x_{kl} = x_{kl} x_{ij} ; i, j, k, l \text{ distinct} \right. \rangle.$$ vP_n^+ is the quotient of vP_n by the relations $x_{ij} x_{ji} = 1$ for $i \neq j$. He Wang (Joint with Alexander Suciu)

Cohomology jump loci of configuration spaces

March 8, 2015 12 / 1
The pure virtual braid groups

- The virtual braids come from the virtual knot theory by Kauffman.
- The generators σ_i and s_i of the virtual braid groups vB_n are
The pure virtual braid groups

- The virtual braids come from the virtual knot theory by Kauffman.
- The generators σ_i and s_i of the virtual braid groups vB_n are

\[
\begin{array}{cccccc}
1 & i-1 & i & i+1 & i+2 & n \\
\cdots & \x & \cdots & \cdots & \cdots & \cdots \\
1 & i-1 & i & i+1 & i+2 & n \\
\cdots & \x & \cdots & \cdots & \cdots & \cdots \\
\end{array}
\]
The pure virtual braid groups

- The virtual braids come from the virtual knot theory by Kauffman.
- The generators σ_i and s_i of the virtual braid groups vB_n are

$$
\begin{array}{ccccccc}
1 & i-1 & i & i+1 & i+2 & n \\
\vdots & \boxtimes & \vdots & \vdots & \vdots & \\
1 & i-1 & i & i+1 & i+2 & n
\end{array}
$$

- The relations for vB_n include the relations for B_n and S_n, and

$$
\begin{aligned}
\sigma_i s_j &= s_j \sigma_i, & |i - j| \geq 2, \\
s_i s_{i+1} \sigma_i &= \sigma_{i+1} s_i s_{i+1}, & i = 1, \ldots, n - 2.
\end{aligned}
$$

(1)
The pure virtual braid groups

- The virtual braids comes from the virtual knot theory by Kauffman.
- The generators σ_i and s_i of the virtual braid groups vB_n are

\[
\begin{array}{cccccc}
1 & i-1 & i & i+1 & i+2 & n \\
\ldots & \times & \times & \ldots & & \\
\end{array}
\quad
\begin{array}{cccccc}
1 & i-1 & i & i+1 & i+2 & n \\
\ldots & \times & \times & \ldots & & \\
\end{array}
\]

- The relations for vB_n include the relations for B_n and S_n, and

\[
\begin{align*}
\sigma_i s_j &= s_j \sigma_i, & |i - j| \geq 2, \\
 s_i s_{i+1} s_i &= \sigma_i s_{i+1} s_i, & i = 1, \ldots, n - 2.
\end{align*}
\] (1)

- $1 \to vP_n \to vB_n \overset{\rho}{\to} S_n \to 1$.

The pure virtual braid groups

- The virtual braids comes from the virtual knot theory by Kauffman.
- The generators σ_i and s_i of the virtual braid groups vB_n are

\[
\begin{array}{cccccc}
1 & i-1 & i & i+1 & i+2 & n \\
\vdots & \circ & \circ & \circ & \circ & \vdots \\
\end{array}
\quad
\begin{array}{cccccc}
1 & i-1 & i & i+1 & i+2 & n \\
\vdots & \circ & \circ & \circ & \circ & \vdots \\
\end{array}
\]

- The relations for vB_n include the relations for B_n and S_n, and

\[
\begin{cases}
\sigma_i s_j = s_j \sigma_i, & |i - j| \geq 2, \\
s_i s_{i+1} \sigma_i = \sigma_{i+1} s_i s_{i+1}, & i = 1, \ldots, n-2.
\end{cases}
\]

(1)

- $1 \to vP_n \to vB_n \xrightarrow{\rho} S_n \to 1$.
- The pure virtual braid groups vP_n has presentation [Bardakov04]

\[
\left\langle x_{ij}, (1 \leq i \neq j \leq n) \right| \begin{array}{l}
x_{ij} x_{ik} x_{jk} = x_{jk} x_{ik} x_{ij}; \\
x_{ij} x_{kl} = x_{kl} x_{ij}; \quad i, j, k, l \text{ distinct}
\end{array} \right\}.
\]
The pure virtual braid groups

- The virtual braids come from the virtual knot theory by Kauffman.
- The generators σ_i and s_i of the virtual braid groups vB_n are

\[
\begin{array}{c|c|c|c|c|c|c}
1 & i-1 & i & i+1 & i+2 & n \\
\vdots & \cdots & \times & \cdots & \cdots & \cdots \\
\end{array}
\quad
\begin{array}{c|c|c|c|c|c|c}
1 & i-1 & i & i+1 & i+2 & n \\
\vdots & \cdots & \times & \cdots & \cdots & \cdots \\
\end{array}
\]

- The relations for vB_n include the relations for B_n and S_n, and

\[
\begin{cases}
\sigma_is_j = s_j\sigma_i, & |i-j| \geq 2, \\
s_is_{i+1}\sigma_i = \sigma_{i+1}s_is_{i+1}, & i = 1, \ldots, n-2.
\end{cases}
\]

- The pure virtual braid groups vP_n has presentation [Bardakov04]

\[
\left\langle x_{ij}, (1 \leq i \neq j \leq n) \mid \begin{array}{c}
x_{ij}x_{ik}x_{jk} = x_{jk}x_{ik}x_{ij}; \\
x_{ij}x_{kl} = x_{kl}x_{ij}; \\
i, j, k, l \text{ distinct}
\end{array} \right\rangle.
\]

- vP_n^+ is the quotient of vP_n by the relations $x_{ij}x_{ji} = 1$ for $i \neq j$.

He Wang (Joint with Alexander Suciu) Cohomology jump loci of configuration spaces March 8, 2015 12 / 1
Theorem (Suciu, W. 15)

The pure virtual braid groups vP_n and vP^+_n are 1-formal if and only if $n \leq 3$.

Sketch of proof:

Lemma

There are split monomorphisms

$\begin{array}{c} vP_2 \\ \downarrow \\ vP_3 \\ \downarrow \\ vP_4 \\ \downarrow \\ \vdots \\ vP_5 \\ \downarrow \\ vP_6 \\ \downarrow \\ \vdots \end{array}$

Lemma

Suppose there is a split monomorphism $\iota: N \hookrightarrow G$. If G is 1-formal, then N is also 1-formal.

He Wang (Joint with Alexander Suciu)
Cohomology jump loci of configuration spaces
March 8, 2015 13 / 1
Theorem (Suciu, W. 15)

The pure virtual braid groups vP_n and vP_n^+ are 1-formal if and only if $n \leq 3$.

Sketch of proof:

Lemma

There are split monomorphisms
Theorem (Suciu, W. 15)

The pure virtual braid groups vP_n and vP_n^+ are 1-formal if and only if $n \leq 3$.

Sketch of proof:

Lemma

There are split monomorphisms

$$
\begin{align*}
\text{vP}_2^+ & \xleftarrow{} \text{vP}_3^+ & \xleftarrow{} \text{vP}_4^+ & \xleftarrow{} \text{vP}_5^+ & \xleftarrow{} \text{vP}_6^+ & \rightarrow & \cdots \\
\downarrow & & \downarrow & & \downarrow & & \\
\text{vP}_2 & \xleftarrow{} \text{vP}_3 & \xleftarrow{} \text{vP}_4 & \xleftarrow{} \text{vP}_5 & \xleftarrow{} \text{vP}_6 & \rightarrow & \cdots
\end{align*}
$$

Lemma

Suppose there is a split monomorphism $\iota: N \hookrightarrow G$. If G is 1-formal, then N is also 1-formal.
Lemma

The group μP_3 is 1-formal.

Next we show that $\mu P_3 + 4$ is not 1-formal.
Lemma

The group vP_3 is 1-formal.

Next we show that vP_4^+ is not 1-formal.
Lemma

The group vP_3 is 1-formal.

Next we show that vP_4^+ is not 1-formal.

Lemma

The first resonance variety $\mathcal{R}_1^1(vP_4^+, \mathbb{C})$ is the subvariety of \mathbb{C}^6 given by the equations

\[
\begin{align*}
 x_{12}x_{24}(x_{13} + x_{23}) + x_{13}x_{34}(x_{12} - x_{23}) - x_{24}x_{34}(x_{12} + x_{13}) &= 0, \\
 x_{12}x_{23}(x_{14} + x_{24}) + x_{12}x_{34}(x_{23} - x_{14}) + x_{14}x_{34}(x_{23} + x_{24}) &= 0, \\
 x_{13}x_{23}(x_{14} + x_{24}) + x_{14}x_{24}(x_{13} + x_{23}) + x_{34}(x_{13}x_{23} - x_{14}x_{24}) &= 0, \\
 x_{12}(x_{13}x_{14} - x_{23}x_{24}) + x_{34}(x_{13}x_{23} - x_{14}x_{24}) &= 0.
\end{align*}
\]
Lemma

The group vP_3 is 1-formal.

Next we show that vP_4^+ is not 1-formal.

Lemma

The first resonance variety $R_1^1(vP_4^+, \mathbb{C})$ is the subvariety of \mathbb{C}^6 given by the equations

\[
\begin{align*}
\quad x_{12}x_{24}(x_{13} + x_{23}) + x_{13}x_{34}(x_{12} - x_{23}) - x_{24}x_{34}(x_{12} + x_{13}) &= 0, \\
\quad x_{12}x_{23}(x_{14} + x_{24}) + x_{12}x_{34}(x_{23} - x_{14}) + x_{14}x_{34}(x_{23} + x_{24}) &= 0, \\
\quad x_{13}x_{23}(x_{14} + x_{24}) + x_{14}x_{24}(x_{13} + x_{23}) + x_{34}(x_{13}x_{23} - x_{14}x_{24}) &= 0, \\
\quad x_{12}(x_{13}x_{14} - x_{23}x_{24}) + x_{34}(x_{13}x_{23} - x_{14}x_{24}) &= 0.
\end{align*}
\]

\Rightarrow The group vP_4^+ is not 1-formal.
The pure welded braid groups (McCool groups)

- The welded braid group wB_n has the same generators as vB_n, adding one more class of relations

$$\sigma_i \sigma_{i+1} s_i = s_{i+1} \sigma_i \sigma_{i+1}, \ i = 1, 2, \ldots, n - 2.$$

- $1 \to wP_n \to wB_n \xrightarrow{\rho} S_n \to 1$.

- The pure welded braid groups wP_n has presentation [McCool 86]

$$\left\langle x_{ij}, (1 \leq i \neq j \leq n) \mid x_{ij} x_{ik} x_{jk} = x_{jk} x_{ik} x_{ij}; \ x_{ij} x_{kl} = x_{kl} x_{ij}; \ i, j, k, l \text{ distinct} \right. \left. \ x_{ij} x_{kj} = x_{kj} x_{ij}; \ i, j, k \text{ distinct} \right\rangle.$$

- There is a subgroup of wP_n generated by the x_{ij} for $1 \leq i < j \leq n$, denoted by wP_n^+. The group wP_n is called McCool group and wP_n^+ is called upper McCool group.
Theorem (D. Cohen 09)

The first resonance variety of McCool group wP_n is

$$R_1^1(\text{wP}_n, \mathbb{C}) = \bigcup_{1 \leq i < j \leq n} C_{ij} \cup \bigcup_{1 \leq i < j < k \leq n} C_{ijk},$$

where $C_{ij} = \mathbb{C}^2$ and $C_{ijk} = \mathbb{C}^3$.

Theorem (Suciu, W. 15)

The first resonance variety of upper McCool group wP_n^+ is

$$R_1^1(\text{wP}_n^+, \mathbb{C}) = \bigcup_{1 \leq i < j \leq n-1} C_{ij},$$

where $C_{ij} = \mathbb{C}^{j+1}$.

He Wang (Joint with Alexander Suciu)

Cohomology jump loci of configuration spaces

March 8, 2015
Theorem (D. Cohen 09)

The first resonance variety of McCool group wP_n is

$$R_1^1(wP_n, \mathbb{C}) = \bigcup_{1 \leq i < j \leq n} C_{ij} \cup \bigcup_{1 \leq i < j < k \leq n} C_{ijk},$$

where $C_{ij} = \mathbb{C}^2$ and $C_{ijk} = \mathbb{C}^3$.

Theorem (Suciu, W. 15)

The first resonance variety of upper McCool group wP_n^+ is

$$R_1^1(wP_n^+, \mathbb{C}) = \bigcup_{1 \leq i < j \leq n-1} C_{i,j},$$

where $C_{i,j} = \mathbb{C}^{j+1}$.
Future work

- The relations between the Chen ranks $\theta_k(G)$ and $R_1^1(G)$

$$\theta_k(G) = \sum_{m \geq 2} c_m \cdot \theta_k(F_m)$$

where c_m is the number of m-dimensional components of $R_1^1(G)$. (Schenck and Suciu04) (Cohen and Schenck14)
Future work

- The relations between the Chen ranks $\theta_k(G)$ and $R_1^1(G)$

$$\theta_k(G) = \sum_{m \geq 2} c_m \cdot \theta_k(F_m)$$

where c_m is the number of m-dimensional components of $R_1^1(G)$. (Schenck and Suciu04) (Cohen and Schenck14)

- The relations between the Chen ranks $\theta_k(G)$ and $V_1^1(G)$. Replace c_m in the above formula by the number of m-dimensional components of $TC_1(V_1(G))$.
Future work

- The relations between the Chen ranks $\theta_k(G)$ and $R_1(G)$

$$\theta_k(G) = \sum_{m \geq 2} c_m \cdot \theta_k(F_m)$$

where c_m is the number of m-dimensional components of $R_1(G)$. (Schenck and Suciu04) (Cohen and Schenck14)

- The relations between the Chen ranks $\theta_k(G)$ and $\mathcal{V}_1(G)$. Replace c_m in the above formula by the number of m-dimensional components of $TC_1(\mathcal{V}_1(G))$.

Thank You!