Formality properties: generalizations and applications

He Wang
(joint work with Alex Suciu)

University of Nevada, Reno

AMS 2017 Fall Western Sectional Meeting:
Special Session on Homotopy Theory
University of California, Riverside

November 5, 2017
Rational homotopy theory

- Rational homotopy theory is the study of rational homotopy type of spaces. [Quillen 69, Sullivan 77]
Rational homotopy theory

- Rational homotopy theory is the study of rational homotopy type of spaces. [Quillen 69, Sullivan 77]
- Two spaces X and Y have the same rational homotopy type if there is a continuous map $f: X \to Y$ inducing an isomorphism

$$\pi_*(f) \otimes \mathbb{Q}: \pi_*(X) \otimes \mathbb{Q} \to \pi_*(Y) \otimes \mathbb{Q}.$$
Rational homotopy theory

- Rational homotopy theory is the study of rational homotopy type of spaces. [Quillen 69, Sullivan 77]
- Two spaces X and Y have *the same rational homotopy type* if there is a continuous map $f : X \to Y$ inducing an isomorphism

$$\pi_\ast(f) \otimes \mathbb{Q} : \pi_\ast(X) \otimes \mathbb{Q} \to \pi_\ast(Y) \otimes \mathbb{Q}.$$

- For a “formal” simply connected space, its rational homotopy type is determined by its cohomology algebra over \mathbb{Q}.

Formality property of a CDGA

- Let $A = (A^*, d_A)$ be a graded-commutative differential graded algebra (CDGA) over \mathbb{Q}.

- A morphism $f: A \rightarrow B$ is a quasi-isomorphism if $f^*: H^*(A) \rightarrow H^*(B)$ is an isomorphism.

- Each connected CDGA (A, d_A) has a minimal model $(M(A), d)$, unique up to isomorphism. [Sullivan 77]

- A is said to be formal if there exists a quasi-isomorphism $(M(A), d) \rightarrow (H^*(A), 0)$, equivalently, there is a sequence of zig-zag quasi-isomorphisms $(A, d_A) \leftarrow \cdots \leftarrow (H^*(A), 0)$.
Formality property of a CDGA

- Let $A = (A^*, d_A)$ be a graded-commutative differential graded algebra (CDGA) over \mathbb{Q}.
- A CDGA morphism $f : A \to B$ is a quasi-isomorphism if

$$f^*: H^*(A) \to H^*(B)$$

is an isomorphism.

Each connected CDGA (A, d_A) has a minimal model $(M(A), d_A)$, unique up to isomorphism. [Sullivan 77]

A is said to be formal if there exists a quasi-isomorphism $(M(A), d_A) \to (H^*(A), 0)$, equivalently, there is a sequence of zig-zag quasi-isomorphisms $(A, d_A) \leftarrow \cdots \to (H^*(A), 0)$.
Formality property of a CDGA

- Let $A = (A^*, d_A)$ be a graded-commutative differential graded algebra (CDGA) over \mathbb{Q}.

- A CDGA morphism $f : A \to B$ is a quasi-isomorphism if

$$f^* : H^*(A) \to H^*(B)$$

is an isomorphism.

- Each connected CDGA (A, d_A) has a minimal model $(\mathcal{M}(A), d)$, unique up to isomorphism. [Sullivan 77]
Formality property of a CDGA

- Let $A = (A^*, d_A)$ be a graded-commutative differential graded algebra (CDGA) over \mathbb{Q}.
- A CDGA morphism $f : A \to B$ is a quasi-isomorphism if
 \[f^* : H^*(A) \to H^*(B) \]
is an isomorphism.
- Each connected CDGA (A, d_A) has a minimal model $(\mathcal{M}(A), d)$, unique up to isomorphism. [Sullivan 77]
- A is said to be formal if there exists a quasi-isomorphism
 \[(\mathcal{M}(A), d) \to (H^*(A), 0), \]
Formality property of a CDGA

- Let \(A = (A^*, d_A) \) be a graded-commutative differential graded algebra (CDGA) over \(\mathbb{Q} \).
- A CDGA morphism \(f : A \to B \) is a **quasi-isomorphism** if
 \[
f^* : H^*(A) \to H^*(B)
\]
is an isomorphism.
- Each connected CDGA \((A, d_A) \) has a minimal model \((M(A), d) \), unique up to isomorphism. [Sullivan 77]
- \(A \) is said to be **formal** if there exists a quasi-isomorphism
 \[
 (M(A), d) \to (H^*(A), 0),
 \]
equivalently, there is a sequence of zig-zag quasi-isomorphisms
 \[
 (A, d_A) \leftarrow \bullet \to \bullet \leftarrow \cdots \to (H^*(A), 0).
 \]
Formality property of a space

- $A_{PL}(X)$: the rational Sullivan model of a connected space X.
Formality property of a space

- $A_{PL}(X)$: the rational Sullivan model of a connected space X.

$$X \longrightarrow A_{PL}(X) \longrightarrow M(X)$$
Formality property of a space

- $A_{PL}(X)$: the rational Sullivan model of a connected space X.

\[
\begin{array}{ccc}
X & \xrightarrow{\sim} & A_{PL}(X) & \xrightarrow{\sim} & M(X) \\
\end{array}
\]

- X is said to be \textit{formal}, if $A_{PL}(X)$ is formal, i.e.,
Formality property of a space

- $A_{PL}(X)$: the rational Sullivan model of a connected space X.

\[
X \longrightarrow A_{PL}(X) \longrightarrow M(X)
\]

- X is said to be **formal**, if $A_{PL}(X)$ is formal, i.e.,

\[
A_{PL}(X) \xleftarrow{\text{quasi-iso.}} M(X) \xrightarrow{\text{quasi-iso.}} (H^*(X; \mathbb{Q}), 0)
\]

Theorem (Deligne–Griffiths–Morgan–Sullivan 75) Compact K"ahler manifolds are formal over \mathbb{R}.

Theorem (Sullivan 77, Neisendorfer–Miller 78, Halperin–Stasheff 79) Let $\mathbb{Q} \subset K$ be a field extension, and X be a connected space with finite Betti numbers. X is formal over \mathbb{Q} if and only if X is formal over K.

Corollary [Sullivan 77] Compact K"ahler manifolds are formal over \mathbb{Q}.
Formality property of a space

- $A_{PL}(X)$: the rational Sullivan model of a connected space X.

\[X \xrightarrow{\sim} A_{PL}(X) \xrightarrow{\sim} M(X) \]

- X is said to be *formal*, if $A_{PL}(X)$ is formal, i.e.,

\[A_{PL}(X) \xleftarrow{\text{quasi-iso.}} M(X) \xrightarrow{\text{quasi-iso.}} (H^*(X; \mathbb{Q}), 0) \]

Theorem (Deligne–Griffiths–Morgan–Sullivan 75)

*Compact Kähler manifolds are formal over \mathbb{R}.***
Formality property of a space

- $A_{PL}(X)$: the rational Sullivan model of a connected space X.

$X \xrightarrow{\sim} \mathcal{M}(X)$

- X is said to be *formal*, if $A_{PL}(X)$ is formal, i.e.,

\[A_{PL}(X) \xleftarrow{\text{quasi-iso.}} \mathcal{M}(X) \xrightarrow{\text{quasi-iso.}} (H^*(X; \mathbb{Q}), 0) \]

Theorem (Deligne–Griffiths–Morgan–Sullivan 75)

*Compact Kähler manifolds are formal over \mathbb{R}.***

Theorem (Sullivan 77, Neisendorfer–Miller 78, Halperin–Stasheff 79)

*Let $\mathbb{Q} \subset \mathbb{K}$ be a field extension, and X be a connected space with finite Betti numbers. X is formal over \mathbb{Q} if and only if X is formal over \mathbb{K}.***
Formality property of a space

- $A_{PL}(X)$: the rational Sullivan model of a connected space X.

$$X \quad \xrightarrow{\text{formal}} \quad A_{PL}(X) \quad \xrightarrow{\text{formal}} \quad \mathcal{M}(X)$$

- X is said to be formal, if $A_{PL}(X)$ is formal, i.e.,

$$A_{PL}(X) \xleftarrow{\text{quasi}-\text{iso.}} \mathcal{M}(X) \xrightarrow{\text{quasi}-\text{iso.}} (H^*(X; \mathbb{Q}), 0)$$

Theorem (Deligne–Griffiths–Morgan–Sullivan 75)

Compact Kähler manifolds are formal over \mathbb{R}.

Theorem (Sullivan 77, Neisendorfer–Miller 78, Halperin–Stasheff 79)

Let $\mathbb{Q} \subset \mathbb{K}$ be a field extension, and X be a connected space with finite Betti numbers. X is formal over \mathbb{Q} if and only if X is formal over \mathbb{K}.

Corollary [Sullivan 77] Compact Kähler manifolds are formal over \mathbb{Q}.
Formality Properties of DG-

Remark
We can talk about “formality property” about an algebraic object A with a differential $d : A \to A$:
We can talk about “formality property” about an algebraic object A with a differential $d : A \to A$:

- Graded-commutative differential graded algebra (CDGA).
- Differential graded algebra (DGA).
- Differential graded Lie algebra (DGLA).
Remark

We can talk about “formality property” about an algebraic object A with a differential $d : A \to A$:

- Graded-commutative differential graded algebra (CDGA).
- Differential graded algebra (DGA).
- Differential graded Lie algebra (DGLA).
- C_∞-algebra; A_∞-algebra; L_∞-algebra.
Remark

We can talk about “formality property” about an algebraic object A with a differential $d : A \to A$:

- Graded-commutative differential graded algebra (CDGA).
- Differential graded algebra (DGA).
- Differential graded Lie algebra (DGLA).
- C_∞-algebra; A_∞-algebra; L_∞-algebra.
- Differential graded operad.
Remark

We can talk about “formality property” about an algebraic object A with a differential $d : A \to A$:

- Graded-commutative differential graded algebra (CDGA).
- Differential graded algebra (DGA).
- Differential graded Lie algebra (DGLA).
- C_∞-algebra; A_∞-algebra; L_∞-algebra.
- Differential graded operad.

Theorem (Santos–Navarro–Pascual–Roig 05)

Let $\mathbb{Q} \subset \mathbb{K}$ be a field extension, and P be a dg operad over \mathbb{Q} with homology of finite type. P is formal if and only if $P \otimes \mathbb{K}$ is formal.
Partial formality

- A CDGA morphism \(f : A \to B \) is an \(i \)-quasi-isomorphism if

\[
f^* : H^j(A) \to H^j(B)
\]

is an isomorphism for each \(j \leq i \) and monomorphism for \(j = i + 1 \).
Partial formality

- A **CDGA** morphism $f : A \rightarrow B$ is an *i-quasi-isomorphism* if

 $$f^* : H^j(A) \rightarrow H^j(B)$$

 is an isomorphism for each $j \leq i$ and monomorphism for $j = i + 1$.

- Each connected **CDGA** A has an i-minimal model $\mathcal{M}(A, i)$ unique up to isomorphism. [Morgan 78]
Partial formality

- A **CDGA** morphism $f : A \to B$ is an *i-quasi-isomorphism* if

 \[f^* : H^j(A) \to H^j(B) \]

 is an isomorphism for each $j \leq i$ and monomorphism for $j = i + 1$.

- Each connected **CDGA** A has an *i-minimal model* $\mathcal{M}(A, i)$ unique up to isomorphism. [Morgan 78]

- A is said to be *i-formal* if there exists an *i-quasi-isomorphism*

 \[\mathcal{M}(A, i) \to (H^*(A), 0). \]
Partial formality

- A **cdga** morphism \(f : A \to B \) is an \(i \)-**quasi-isomorphism** if
 \[
 f^* : H^j(A) \to H^j(B)
 \]
is an isomorphism for each \(j \leq i \) and monomorphism for \(j = i + 1 \).

- Each connected **cdga** \(A \) has an \(i \)-minimal model \(\mathcal{M}(A, i) \) unique up to isomorphism. [Morgan 78]

- \(A \) is said to be \(i \)-**formal** if there exists an \(i \)-quasi-isomorphism
 \[
 \mathcal{M}(A, i) \to (H^*(A), 0).
 \]

- A space \(X \) is said to be \(i \)-**formal**, if \(A_{PL}(X) \) is \(i \)-formal.
Partial formality

- A CDGA morphism $f : A \to B$ is an i-quasi-isomorphism if
 \[f^* : H^j(A) \to H^j(B) \]
 is an isomorphism for each $j \leq i$ and monomorphism for $j = i + 1$.
- Each connected CDGA A has an i-minimal model $\mathcal{M}(A, i)$ unique up to isomorphism. [Morgan 78]
- A is said to be i-formal if there exists an i-quasi-isomorphism
 \[\mathcal{M}(A, i) \to (H^*(A), 0). \]
- A space X is said to be i-formal, if $A_{PL}(X)$ is i-formal.

Theorem (Suciu–W.)

Let $\mathbb{Q} \subset \mathbb{K}$ be a field extension, and X be a connected space with finite Betti numbers $b_1(X), \ldots, b_{i+1}(X)$. Then X is i-formal over \mathbb{Q} if and only if X is i-formal over \mathbb{K}.
1-formality of groups

The 1-formality of a path-connected space X depends only on $\pi_1(X)$. A finitely generated group G is called 1-formal if $X = K(G,1)$ is 1-formal, i.e., $\mathcal{M}(X,1)$ is 1-quasi-isomorphic to $(H^\ast(G;\mathbb{Q}),0)$.

Example

Formal spaces: compact Kähler manifolds, complements of complex hyperplane arrangements, ...

1-formal groups: finitely generated Artin groups, pure braid groups, ...

Possible not 1-formal groups: link groups, nilpotent groups, pure braid groups on surfaces, the fundamental groups of algebraic varieties, ...

Heisenberg (type) group H_n is $(n-1)$-formal but not n-formal.

An obstruction to formality is provided by non-vanishing higher Massey products.
1-formality of groups

- The 1-formality of a path-connected space X depends only on $\pi_1(X)$.
1-formality of groups

- The 1-formality of a path-connected space X depends only on $\pi_1(X)$.
- A finitely generated group G is called 1-formal if $X = K(G, 1)$ is 1-formal,
1-formality of groups

- The 1-formality of a path-connected space X depends only on $\pi_1(X)$.
- A finitely generated group G is called 1-formal if $X = K(G, 1)$ is 1-formal, i.e., $\mathcal{M}(X, 1)$ is 1-quasi-isomorphic to $(H^*(G; \mathbb{Q}), 0)$.

Examples:

- Formal spaces: compact Kähler manifolds, complements of complex hyperplane arrangements, ...
- 1-formal groups: finitely generated Artin groups, pure braid groups, ...
- Possible not 1-formal groups: link groups, nilpotent groups, pure braid groups on surfaces, the fundamental groups of algebraic varieties, ...
- Heisenberg (type) group H_n is $(n-1)$-formal but not n-formal.

An obstruction to formality is provided by non-vanishing higher Massey products.
1-formality of groups

- The 1-formality of a path-connected space X depends only on $\pi_1(X)$.
- A finitely generated group G is called 1-formal if $X = K(G, 1)$ is 1-formal,
 i.e., $\mathcal{M}(X, 1)$ is 1-quasi-isomorphic to $(H^*(G; \mathbb{Q}), 0)$.

Example

- Formal spaces: compact Kähler manifolds, complements of complex hyperplane arrangements, ...
1-formality of groups

- The 1-formality of a path-connected space \(X \) depends only on \(\pi_1(X) \).
- A finitely generated group \(G \) is called **1-formal** if \(X = K(G, 1) \) is 1-formal,
i.e., \(M(X, 1) \) is 1-quasi-isomorphic to \((H^*(G; \mathbb{Q}), 0) \).

Example

- Formal spaces: compact Kähler manifolds, complements of complex hyperplane arrangements, ...
- 1-formal groups: finitely generated Artin groups, pure braid groups, ...
1-formality of groups

- The 1-formality of a path-connected space X depends only on $\pi_1(X)$.
- A finitely generated group G is called 1-formal if $X = K(G, 1)$ is 1-formal,
 i.e., $\mathcal{M}(X, 1)$ is 1-quasi-isomorphic to $(H^*(G; \mathbb{Q}), 0)$.

Example

- Formal spaces: compact Kähler manifolds, complements of complex hyperplane arrangements, ...
- 1-formal groups: finitely generated Artin groups, pure braid groups, ...
- Possible not 1-formal groups: link groups, nilpotent groups, pure braid groups on surfaces, the fundamental groups of algebraic varieties,...
1-formality of groups

- The 1-formality of a path-connected space X depends only on $\pi_1(X)$.
- A finitely generated group G is called 1-formal if $X = K(G, 1)$ is 1-formal, i.e., $\mathcal{M}(X, 1)$ is 1-quasi-isomorphic to $(H^*(G; \mathbb{Q}), 0)$.

Example

- Formal spaces: compact Kähler manifolds, complements of complex hyperplane arrangements, ...
- 1-formal groups: finitely generated Artin groups, pure braid groups, ...
- Possible not 1-formal groups: link groups, nilpotent groups, pure braid groups on surfaces, the fundamental groups of algebraic varieties, ...
- Heisenberg (type) group \mathcal{H}_n is $(n - 1)$-formal but not n-formal.
1-formality of groups

- The 1-formality of a path-connected space X depends only on $\pi_1(X)$.
- A finitely generated group G is called 1-formal if $X = K(G, 1)$ is 1-formal, i.e., $\mathcal{M}(X, 1)$ is 1-quasi-isomorphic to $(H^*(G; \mathbb{Q}), 0)$.

Example

- Formal spaces: compact Kähler manifolds, complements of complex hyperplane arrangements, ...
- 1-formal groups: finitely generated Artin groups, pure braid groups, ...
- Possible not 1-formal groups: link groups, nilpotent groups, pure braid groups on surfaces, the fundamental groups of algebraic varieties, ...
- Heisenberg (type) group \mathcal{H}_n is $(n - 1)$-formal but not n-formal.

An obstruction to formality is provided by non-vanishing higher Massey products.
Graded Lie algebras

Let G be a finitely generated group.

- The *lower central series* of G: $\Gamma_1 G = G$, $\Gamma_2 G = [G, G]$, $\Gamma_{k+1} G = [\Gamma_k G, G]$, $k \geq 1$.

...
Graded Lie algebras

Let G be a finitely generated group.

- The *lower central series* of G: $\Gamma_1 G = G$, $\Gamma_2 G = [G, G]$, $\Gamma_{k+1} G = [\Gamma_k G, G]$, $k \geq 1$.

- The *associated graded Lie algebra* of G is defined to be

\[
\text{gr}(G; \mathbb{Q}) := \bigoplus_{k \geq 1} (\Gamma_k G / \Gamma_{k+1} G) \otimes_{\mathbb{Z}} \mathbb{Q}.
\]
Graded Lie algebras

Let G be a finitely generated group.

- The *lower central series* of G: $\Gamma_1 G = G$, $\Gamma_2 G = [G, G]$, $\Gamma_{k+1} G = [\Gamma_k G, G]$, $k \geq 1$.
- The *associated graded Lie algebra* of G is defined to be
 \[
 \text{gr}(G; \mathbb{Q}) := \bigoplus_{k \geq 1} (\Gamma_k(G)/\Gamma_{k+1}(G)) \otimes_{\mathbb{Z}} \mathbb{Q}.
 \]
- The *holonomy Lie algebra* of a finitely generated group G is defined to be
 \[
 \mathfrak{h}(G; \mathbb{Q}) := \text{Lie}(H_1(G; \mathbb{Q}))/\langle \text{im}(\partial_G) \rangle.
 \]
 Here, ∂_G is the dual of $H^1(G; \mathbb{Q}) \wedge H^1(G; \mathbb{Q}) \cup H^2(G; \mathbb{Q})$. There exists an epimorphism $\Phi_G : \mathfrak{h}(G; \mathbb{Q}) \twoheadrightarrow \text{gr}(G; \mathbb{Q})$. We say that a group G is *graded-formal*, if $\Phi_G : \mathfrak{h}(G; \mathbb{Q}) \twoheadrightarrow \text{gr}(G; \mathbb{Q})$ is an isomorphism of graded Lie algebras.
Graded Lie algebras

Let G be a finitely generated group.

- The *lower central series* of G: $\Gamma_1 G = G$, $\Gamma_2 G = [G, G]$, $\Gamma_{k+1} G = [\Gamma_k G, G]$, $k \geq 1$.

- The *associated graded Lie algebra* of G is defined to be

 $$\text{gr}(G; \mathbb{Q}) := \bigoplus_{k \geq 1} (\Gamma_k(G)/\Gamma_{k+1}(G)) \otimes_{\mathbb{Z}} \mathbb{Q}.$$

- The *holonomy Lie algebra* of a finitely generated group G is defined to be

 $$\mathfrak{h}(G; \mathbb{Q}) := \text{Lie}(H_1(G; \mathbb{Q}))/\langle \text{im}(\partial_G) \rangle.$$

 Here, ∂_G is the dual of $H^1(G; \mathbb{Q}) \wedge H^1(G; \mathbb{Q}) \xrightarrow{\cup} H^2(G; \mathbb{Q})$.

- There exists an epimorphism $\Phi_G : \mathfrak{h}(G; \mathbb{Q}) \twoheadrightarrow \text{gr}(G; \mathbb{Q})$. [Lambe 86]
Graded Lie algebras

Let G be a finitely generated group.

- The *lower central series* of G: $\Gamma_1 G = G$, $\Gamma_2 G = [G, G]$, $\Gamma_{k+1} G = [\Gamma_k G, G]$, $k \geq 1$.
- The *associated graded Lie algebra* of G is defined to be

$$\text{gr}(G; \mathbb{Q}) := \bigoplus_{k \geq 1} (\Gamma_k(G)/\Gamma_{k+1}(G)) \otimes_{\mathbb{Z}} \mathbb{Q}.$$

- The *holonomy Lie algebra* of a finitely generated group G is defined to be

$$\mathfrak{h}(G; \mathbb{Q}) := \text{Lie}(\text{H}_1(G; \mathbb{Q}))/\langle \text{im}(\partial_G) \rangle.$$

Here, ∂_G is the dual of $H^1(G; \mathbb{Q}) \wedge H^1(G; \mathbb{Q}) \stackrel{\cup}{\rightarrow} H^2(G; \mathbb{Q})$.

- There exists an epimorphism $\Phi_G : \mathfrak{h}(G; \mathbb{Q}) \twoheadrightarrow \text{gr}(G; \mathbb{Q})$. [Lambe 86]

- We say that a group G is *graded-formal*, if $\Phi_G : \mathfrak{h}(G; \mathbb{Q}) \twoheadrightarrow \text{gr}(G; \mathbb{Q})$ is an isomorphism of graded Lie algebras.
Malcev Lie algebra

Let G be a finitely generated group.

- There exists a tower of nilpotent Lie algebras [Malcev 51]

\[
\mathcal{L}((G/\Gamma_2 G) \otimes \mathbb{Q}) \leftarrow \mathcal{L}((G/\Gamma_3 G) \otimes \mathbb{Q}) \leftarrow \mathcal{L}((G/\Gamma_4 G) \otimes \mathbb{Q}) \leftarrow \]

The inverse limit of the tower is called the Malcev Lie algebra of G, denoted by $\mathfrak{m}(G; \mathbb{Q})$.

The universal enveloping algebra of $\mathfrak{m}(G; \mathbb{Q})$ is isomorphic to $\hat{\mathbb{Q}} G$.

[Quillen 69]

Let $M(G, 1)$ be the 1-minimal model of $K(G, 1)$.

There is a one-to-one correspondence between $M(G, 1)$ and the Malcev Lie algebra $\mathfrak{m}(G; \mathbb{Q})$. [Sullivan 77, Cenkl–Porter 81]
Malcev Lie algebra

Let G be a finitely generated group.

- There exists a tower of nilpotent Lie algebras [Malcev 51]

$$\mathfrak{L}((G/\Gamma_2 G) \otimes \mathbb{Q}) \leftarrow \mathfrak{L}((G/\Gamma_3 G) \otimes \mathbb{Q}) \leftarrow \mathfrak{L}((G/\Gamma_4 G) \otimes \mathbb{Q}) \leftarrow$$

The inverse limit of the tower is called the \textit{Malcev Lie algebra} of G, denoted by $\mathfrak{m}(G; \mathbb{Q})$.
Malcev Lie algebra

Let G be a finitely generated group.

- There exists a tower of nilpotent Lie algebras [Malcev 51]

\[\mathcal{L}(G/\Gamma_2 G \otimes \mathbb{Q}) \leftarrow \mathcal{L}(G/\Gamma_3 G \otimes \mathbb{Q}) \leftarrow \mathcal{L}(G/\Gamma_4 G \otimes \mathbb{Q}) \]

The inverse limit of the tower is called the **Malcev Lie algebra** of G, denoted by $\mathfrak{m}(G; \mathbb{Q})$.

- The universal enveloping algebra of $\mathfrak{m}(G; \mathbb{Q})$ is isomorphic to $\widehat{\mathbb{Q}G}$. [Quillen 69]
Malcev Lie algebra

Let G be a finitely generated group.

- There exists a tower of nilpotent Lie algebras [Malcev 51]

$$\mathcal{L}((G/\Gamma_2 G) \otimes \mathbb{Q}) \leftarrow \mathcal{L}((G/\Gamma_3 G) \otimes \mathbb{Q}) \leftarrow \mathcal{L}((G/\Gamma_4 G) \otimes \mathbb{Q}) \leftarrow \cdots$$

The inverse limit of the tower is called the *Malcev Lie algebra* of G, denoted by $m(G; \mathbb{Q})$.

- The universal enveloping algebra of $m(G; \mathbb{Q})$ is isomorphic to $\hat{\mathbb{Q}G}$. [Quillen 69]

- Let $\mathcal{M}(G, 1)$ be the 1-minimal model of $K(G, 1)$. These is a one to one corresponding between $\mathcal{M}(G, 1)$ and the Malcev Lie algebra $m(G; \mathbb{Q})$. [Sullivan 77, Cenkl–Porter 81]
Partial formality of groups

- $\text{gr}(G; \mathbb{Q}) \xrightarrow{\cong} \text{gr}(m(G; \mathbb{Q}))$. [Quillen 68]
Partial formality of groups

- $\text{gr}(G; \mathbb{Q}) \xrightarrow{\cong} \text{gr}(m(G; \mathbb{Q}))$. [Quillen 68]
- A group G is 1-formal iff $m(G; \mathbb{Q}) \cong \hat{h}(G; \mathbb{Q})$. [Markl–Papadima 92]
Partial formality of groups

- $\text{gr}(G; \mathbb{Q}) \xrightarrow{\cong} \text{gr}(\mathfrak{m}(G; \mathbb{Q}))$. [Quillen 68]
- A group G is 1-formal iff $\mathfrak{m}(G; \mathbb{Q}) \cong \mathring{\mathfrak{h}}(G; \mathbb{Q})$. [Markl–Papadima 92]
- We say that a group G is \textit{filtered-formal}, if there is a filtered Lie algebra isomorphism $\mathfrak{m}(G; \mathbb{Q}) \cong \mathring{\text{gr}}(G; \mathbb{Q})$.
Partial formality of groups

- \(\text{gr}(G; \mathbb{Q}) \xrightarrow{\cong} \text{gr}(\text{m}(G; \mathbb{Q})) \). [Quillen 68]
- A group \(G \) is 1-formal iff \(\text{m}(G; \mathbb{Q}) \cong \hat{\mathfrak{h}}(G; \mathbb{Q}) \). [Markl–Papadima 92]
- We say that a group \(G \) is \textit{filtered-formal}, if there is a filtered Lie algebra isomorphism \(\text{m}(G; \mathbb{Q}) \cong \hat{\text{gr}}(G; \mathbb{Q}) \).

\[
\begin{align*}
\text{m}(G; \mathbb{Q}) & \xrightarrow{1\text{-formal}} \hat{\mathfrak{h}}(G; \mathbb{Q}) \\
\hat{\text{gr}}(\text{m}(G; \mathbb{Q})) & \xrightarrow{\cong \text{Quillen}} \hat{\text{gr}}(G; \mathbb{Q}).
\end{align*}
\]
Partial formality of groups

- \(\text{gr}(G; \mathbb{Q}) \xrightarrow{\sim} \text{gr}(m(G; \mathbb{Q})) \). [Quillen 68]
- A group \(G \) is 1-formal iff \(m(G; \mathbb{Q}) \cong \hat{h}(G; \mathbb{Q}) \). [Markl–Papadima 92]
- We say that a group \(G \) is \textit{filtered-formal}, if there is a filtered Lie algebra isomorphism \(m(G; \mathbb{Q}) \cong \hat{\text{gr}}(G; \mathbb{Q}) \).

\[
\begin{array}{ccc}
m(G; \mathbb{Q}) & \xrightarrow{1\text{-formal}} & \hat{h}(G; \mathbb{Q}) \\
\text{filtered-formal} & \downarrow & \text{graded-formal} \\
\hat{\text{gr}}(m(G; \mathbb{Q})) & \xrightarrow{\cong} & \hat{\text{gr}}(G; \mathbb{Q}).
\end{array}
\]

- formal \(\implies \) \(i \)-formal \(\implies \) 1-formal \(\iff \) graded-formal + filtered-formal.
A finitely generated group G is filtered-formal (graded-formal) over \mathbb{Q} if and only if it is filtered-formal (graded-formal) over K.

Remark

The filtered formality of finite-dimensional, nilpotent Lie algebras has been studied under many different names: 'Carnot', 'naturally graded', 'homogeneous' and 'quasi-cyclic'. In this special case, the above theorem was proved by Cornulier (14).

A finitely generated, torsion-free, 2-step nilpotent group is filtered-formal. [Suciu-W.]

Recently, Bar-Natan has explored the "Taylor expansion" of G, which is a map $E: G \to \hat{\text{gr}}(\mathbb{Q}G)$ satisfying some properties. G has a Taylor expansion $\iff G$ is filtered-formal. G has a quadratic Taylor expansion $\iff G$ is 1-formal.

A map $T: F_n \to \mathbb{Q}\langle\langle z_1, \cdots, z_n \rangle\rangle$ defined by $T(x_i) = \exp(z_i)$ is a Taylor expansion of F_n.
Theorem (Suciu–W.)

A finitely generated group G is filtered-formal (graded-formal) over \mathbb{Q} if and only if it is filtered-formal (graded-formal) over \mathbb{K}.

Remark

- The filtered formality of finite-dimensional, nilpotent Lie algebras has been studied under many different names: ‘Carnot’, ‘naturally graded’, ‘homogeneous’ and ‘quasi-cyclic’. In this special case, the above theorem was proved by Cornulier (14).
Theorem (Suciu–W.)

A finitely generated group G is filtered-formal (graded-formal) over \mathbb{Q} if and only it is filtered-formal (graded-formal) over \mathbb{K}.

Remark

- The filtered formality of finite-dimensional, nilpotent Lie algebras has been studied under many different names: ‘Carnot’, ‘naturally graded’, ‘homogeneous’ and ‘quasi-cyclic’. In this special case, the above theorem was proved by Cornulier (14).
- A finitely generated, torsion-free, 2-step nilpotent group is filtered-formal. [Suciu-W.]
Theorem (Suciu–W.)

A finitely generated group G is filtered-formal (graded-formal) over \mathbb{Q} if and only it is filtered-formal (graded-formal) over \mathbb{K}.

Remark

- The filtered formality of finite-dimensional, nilpotent Lie algebras has been studied under many different names: ‘Carnot’, ‘naturally graded’, ‘homogeneous’ and ‘quasi-cyclic’. In this special case, the above theorem was proved by Cornulier (14).

- A finitely generated, torsion-free, 2-step nilpotent group is filtered-formal. [Suciu-W.]

- Recently, Bar-Natan has explored the “Taylor expansion” of G, which is a map $E : G \to \hat{\mathfrak{g}}\mathfrak{r}(\mathbb{Q}G)$ satisfying some properties.
Theorem (Suciu–W.)

A finitely generated group G is filtered-formal (graded-formal) over \mathbb{Q} if and only it is filtered-formal (graded-formal) over K.

Remark

- The filtered formality of finite-dimensional, nilpotent Lie algebras has been studied under many different names: ‘Carnot’, ‘naturally graded’, ‘homogeneous’ and ‘quasi-cyclic’. In this special case, the above theorem was proved by Cornulier (14).
- A finitely generated, torsion-free, 2-step nilpotent group is filtered-formal. [Suciu-W.]
- Recently, Bar-Natan has explored the “Taylor expansion” of G, which is a map $E : G \to \hat{\text{gr}}(\mathbb{Q}G)$ satisfying some properties.
- G has a Taylor expansion $\iff G$ is filtered-formal.
- G has a quadratic Taylor expansion $\iff G$ is 1-formal.
Theorem (Suciu–W.)

A finitely generated group G is filtered-formal (graded-formal) over \mathbb{Q} if and only if it is filtered-formal (graded-formal) over \mathbb{K}.

Remark

- The filtered formality of finite-dimensional, nilpotent Lie algebras has been studied under many different names: ‘Carnot’, ‘naturally graded’, ‘homogeneous’ and ‘quasi-cyclic’. In this special case, the above theorem was proved by Cornulier (14).
- A finitely generated, torsion-free, 2-step nilpotent group is filtered-formal. [Suciu-W.]
- Recently, Bar-Natan has explored the “Taylor expansion” of G, which is a map $E : G \to \hat{\text{gr}}(\mathbb{Q}G)$ satisfying some properties.
- G has a Taylor expansion $\iff G$ is filtered-formal.
- G has a quadratic Taylor expansion $\iff G$ is 1-formal.
- A map $T : F_n \to \mathbb{Q}\langle\langle z_1, \cdots, z_n \rangle\rangle$ defined by $T(x_i) = \exp(z_i)$ is a Taylor expansion of F_n.
Proposition (Suciu–W.)

Let G be a finitely generated group, and let $K \leq G$ be a finitely generated subgroup. Suppose there is a split monomorphism $\iota : K \rightarrow G$. Then:

1. If G is graded-formal, then K is also graded-formal.
2. If G is filtered-formal, then K is also filtered-formal.
3. If G is 1-formal, then K is also 1-formal.

Proposition (Suciu–W.)

Let G_1 and G_2 be two finitely generated groups. The following conditions are equivalent.

1. G_1 and G_2 are graded-formal (respectively, filtered-formal, or 1-formal).
2. $G_1 \ast G_2$ is graded-formal (respectively, filtered-formal, or 1-formal).
3. $G_1 \times G_2$ is graded-formal (respectively, filtered-formal, or 1-formal).
Proposition (Suciu–W.)

Let G be a finitely generated group, and let $K \leq G$ be a finitely generated subgroup. Suppose there is a split monomorphism $\iota : K \to G$. Then:

1. If G is graded-formal, then K is also graded-formal.
2. If G is filtered-formal, then K is also filtered-formal.
3. If G is 1-formal, then K is also 1-formal.
Proposition (Suciu–W.)

Let G be a finitely generated group, and let $K \leq G$ be a finitely generated subgroup. Suppose there is a split monomorphism $\iota: K \to G$. Then:

1. If G is graded-formal, then K is also graded-formal.
2. If G is filtered-formal, then K is also filtered-formal.
3. If G is 1-formal, then K is also 1-formal.
Propagating partial formality properties

Proposition (Suciu–W.)

Let G be a finitely generated group, and let $K \leq G$ be a finitely generated subgroup. Suppose there is a split monomorphism $\iota : K \to G$. Then:

1. If G is graded-formal, then K is also graded-formal.
2. If G is filtered-formal, then K is also filtered-formal.
3. If G is 1-formal, then K is also 1-formal.

Proposition (Suciu–W.)

Let G_1 and G_2 be two finitely generated groups. The following conditions are equivalent:

1. G_1 and G_2 are graded-formal (respectively, filtered-formal, or 1-formal).
2. $G_1 \ast G_2$ is graded-formal (respectively, filtered-formal, or 1-formal).
3. $G_1 \times G_2$ is graded-formal (respectively, filtered-formal, or 1-formal).
An obstruction to 1-formality: resonance varieties

- Suppose $A^* := H^*(G, \mathbb{C})$ has finite dimension in each degree.
An obstruction to 1-formality: resonance varieties

- Suppose $A^* := H^*(G, \mathbb{C})$ has finite dimension in each degree.
- For each $a \in A^1$, define a cochain complex of finite-dimensional \mathbb{C}-vector spaces,

$$(A, a) : A^0 \xrightarrow{a} A^1 \xrightarrow{a} A^2 \xrightarrow{a} \cdots,$$

with differentials given by left-multiplication by a.

The resonance varieties of G are the homogeneous subvarieties of A^1.
An obstruction to 1-formality: resonance varieties

- Suppose $A^* := H^*(G, \mathbb{C})$ has finite dimension in each degree.
- For each $a \in A^1$, define a cochain complex of finite-dimensional \mathbb{C}-vector spaces,

$$ (A, a) : A^0 \xrightarrow{a} A^1 \xrightarrow{a} A^2 \xrightarrow{a} \cdots, $$

with differentials given by left-multiplication by a.
- The **resonance varieties** of G are the homogeneous subvarieties of A^1

$$ \mathcal{R}_k(G, \mathbb{C}) = \{ a \in A^1 \mid \dim_{\mathbb{C}} H^i(A^*; a) \geq k \}. $$
An obstruction to 1-formality: resonance varieties

- Suppose $A^* := H^*(G, \mathbb{C})$ has finite dimension in each degree.
- For each $a \in A^1$, define a cochain complex of finite-dimensional \mathbb{C}-vector spaces,

$$ (A, a) : A^0 \xrightarrow{a \cup -} A^1 \xrightarrow{a \cup -} A^2 \xrightarrow{a \cup -} \cdots , $$

with differentials given by left-multiplication by a.
- The resonance varieties of G are the homogeneous subvarieties of A^1

$$ \mathcal{R}_k^i(G, \mathbb{C}) = \{ a \in A^1 \mid \dim_{\mathbb{C}} H^i(A^*; a) \geq k \}. $$

Theorem (Dimca–Papadima–Suciu 09)

*If G is 1-formal, $\mathcal{R}_k^1(G, \mathbb{C})$ is a union of rationally defined linear subspaces of $H^1(G, \mathbb{C})$.***
Pure virtual braid groups

- The virtual braid groups come from the virtual knot theory introduced by Kauffman(99).
The virtual braid groups come from the virtual knot theory introduced by Kauffman (99).

The *pure virtual braid groups* of vP_n has a presentation [Bardakov (04)] with generators x_{ij} for $1 \leq i \neq j \leq n$, subject to the relations

$$x_{ij} x_{ik} x_{jk} = x_{jk} x_{ik} x_{ij},$$

$$[x_{ij}, x_{st}] = 1,$$

for i, j, k distinct, for i, j, s, t distinct.
Pure virtual braid groups

- The virtual braid groups come from the virtual knot theory introduced by Kauffman (99).
- The pure virtual braid groups of vP_n has a presentation [Bardakov (04)] with generators x_{ij} for $1 \leq i \neq j \leq n$, subject to the relations

$$x_{ij}x_{ik}x_{jk} = x_{jk}x_{ik}x_{ij}, \quad \text{for } i, j, k \text{ distinct,}$$

$$[x_{ij}, x_{st}] = 1, \quad \text{for } i, j, s, t \text{ distinct.}$$

vP_n has a subgroup generated by x_{ij} for $i < j$, denoted by vP_n^+.
The virtual braid groups come from the virtual knot theory introduced by Kauffman (99).

The pure virtual braid groups of vP_n has a presentation [Bardakov (04)] with generators x_{ij} for $1 \leq i \neq j \leq n$, subject to the relations

$$x_{ij}x_{ik}x_{jk} = x_{jk}x_{ik}x_{ij},$$

for i, j, k distinct,

$$[x_{ij}, x_{st}] = 1,$$

for i, j, s, t distinct.

vP_n has a subgroup generated by x_{ij} for $i < j$, denoted by vP_n^+.

Bartholdi, Enriquez, Etingof, and Rains (06) independently studied vP_n and vP_n^+ as groups arising from the Yang-Baxter equations.
The virtual braid groups come from the virtual knot theory introduced by Kauffman (99).

The pure virtual braid groups of vP_n has a presentation [Bardakov (04)] with generators x_{ij} for $1 \leq i \neq j \leq n$, subject to the relations

$$x_{ij}x_{ik}x_{jk} = x_{jk}x_{ik}x_{ij},$$

for i, j, k distinct,

$$[x_{ij}, x_{st}] = 1,$$

for i, j, s, t distinct.

vP_n has a subgroup generated by x_{ij} for $i < j$, denoted by vP_n^+.

Bartholdi, Enriquez, Etingof, and Rains (06) independently studied vP_n and vP_n^+ as groups arising from the Yang-Baxter equations.

They also showed that vP_n and vP_n^+ are graded-formal (with the work of P. Lee (13)) and computed the cohomology algebras of these groups.
Theorem (Suciu–W.)

The pure virtual braid groups vP_n and vP_n^+ are 1-formal if and only if $n \leq 3$.
Theorem (Suciu–W.)

The pure virtual braid groups \(vP_n \) and \(vP_n^+ \) are 1-formal if and only if \(n \leq 3 \).

Sketch of proof:

Lemma

There are split monomorphisms

\[
\begin{array}{cccccc}
vP_2^+ & \longrightarrow & vP_3^+ & \longrightarrow & vP_4^+ & \longrightarrow & vP_5^+ & \longrightarrow & vP_6^+ & \longrightarrow & \ldots \\
\downarrow & & \downarrow \\
vP_2 & \longrightarrow & vP_3 & \longrightarrow & vP_4 & \longrightarrow & vP_5 & \longrightarrow & vP_6 & \longrightarrow & \ldots
\end{array}
\]
Lemma

The group vP_3 is 1-formal.

Proof:

$P_3 \cong N \times Z$.

□

Lemma

The group vP_4 is not 1-formal.

Proof: The first resonance variety $R_1(vP_4, C)$ is the variety of C_6 given by the equations:

$$x_2 x_4 (x_3 + x_4) + x_3 x_4 (x_2 + x_3) - x_2 x_3 (x_1 + x_2) = 0,$$

$$x_1 x_3 (x_1 + x_3) + x_2 x_3 (x_2 + x_3) + x_2 x_4 (x_2 + x_3) = 0,$$

$$x_1 x_2 (x_1 + x_2) - x_2 x_3 (x_4 - x_3) = 0.$$

\Rightarrow The group vP_4 is not 1-formal.

□
Lemma

The group vP_3 is 1-formal.

Proof: $vP_3 \cong N \ast \mathbb{Z}$, and $P_4 \cong N \times \mathbb{Z}$. □
Lemma

The group vP_3 is 1-formal.

Proof: $vP_3 \cong N \ast \mathbb{Z}$, and $P_4 \cong N \times \mathbb{Z}$. \qed

Lemma

The group vP_4^+ is not 1-formal.
Lemma

The group vP_3 is 1-formal.

Proof: $vP_3 \cong N \times \mathbb{Z}$, and $P_4 \cong N \times \mathbb{Z}$.

Lemma

The group vP_4^+ is not 1-formal.

Proof: The first resonance variety $R_1(vP_4^+, \mathbb{C})$ is the subvariety of \mathbb{C}^6 given by the equations

\begin{align*}
 x_{12}x_{24}(x_{13} + x_{23}) + x_{13}x_{34}(x_{12} - x_{23}) - x_{24}x_{34}(x_{12} + x_{13}) &= 0, \\
 x_{12}x_{23}(x_{14} + x_{24}) + x_{12}x_{34}(x_{23} - x_{14}) + x_{14}x_{34}(x_{23} + x_{24}) &= 0, \\
 x_{13}x_{23}(x_{14} + x_{24}) + x_{14}x_{24}(x_{13} + x_{23}) + x_{34}(x_{13}x_{23} - x_{14}x_{24}) &= 0, \\
 x_{12}(x_{13}x_{14} - x_{23}x_{24}) + x_{34}(x_{13}x_{23} - x_{14}x_{24}) &= 0.
\end{align*}
Lemma

The group vP_3 is 1-formal.

Proof: $vP_3 \cong N \ast \mathbb{Z}$, and $P_4 \cong N \times \mathbb{Z}$.

Lemma

The group vP_4^+ is not 1-formal.

Proof: The first resonance variety $R_1(vP_4^+, \mathbb{C})$ is the subvariety of \mathbb{C}^6 given by the equations

\begin{align*}
x_{12}x_{24}(x_{13} + x_{23}) + x_{13}x_{34}(x_{12} - x_{23}) - x_{24}x_{34}(x_{12} + x_{13}) &= 0, \\
x_{12}x_{23}(x_{14} + x_{24}) + x_{12}x_{34}(x_{23} - x_{14}) + x_{14}x_{34}(x_{23} + x_{24}) &= 0, \\
x_{13}x_{23}(x_{14} + x_{24}) + x_{14}x_{24}(x_{13} + x_{23}) + x_{34}(x_{13}x_{23} - x_{14}x_{24}) &= 0, \\
x_{12}(x_{13}x_{14} - x_{23}x_{24}) + x_{34}(x_{13}x_{23} - x_{14}x_{24}) &= 0.
\end{align*}

\Rightarrow The group vP_4^+ is not 1-formal.
References

Alexander I. Suciu and He Wang,
Formality properties of finitely generated groups and Lie algebras,

Alexander I. Suciu and He Wang,
Pure virtual braids, resonance, and formality,

Alexander I. Suciu and He Wang,
Cup products, lower central series, and holonomy Lie algebras,

Thank You!