1. Let \(X \) be the set \(X = \{1, 2, 3\} \). List all possible topologies on \(X \). How many are there?

2. Let \(X \) be an infinite set and \(p \in X \) some arbitrary element in \(X \). Let \(T_{F,p} \) be the collection of subsets of \(X \) which either have finite complement or don’t contain the point \(p \). Show that \(T_{F,p} \) is a topology on \(X \) (called the Fort topology).

3. Let \(X \) be an infinite set and consider the collection \(\mathcal{T} \) of subsets of \(X \) defined as

\[
\mathcal{T} = \{ \emptyset, \text{All subsets } U \text{ of } X \text{ with infinite complement} \}
\]

Is \(\mathcal{T} \) a topology on \(X \)? Explain your answer.

4. Let \((X, \mathcal{T})\) be a topological space and let \(A \subseteq X \) be a subset of \(X \). We say that \(A \) is dense in \(X \) if for each non-empty \(U \in \mathcal{T} \) the intersection \(A \cap U \) is non-empty. For example the set \(A = X \) is always dense in \(X \). A topological space is said to be separable if it has a countable dense subset.

 (a) Show that a second countable\(^1\) topological space is automatically separable (the converse is not true in general).

 (b) Let \(T_\mathcal{E} \) be the Euclidean topology on \(\mathbb{R} \). Find a countable subset \(A \subset \mathbb{R} \) which is dense in \((\mathbb{R}, T_\mathcal{E})\) (you must show that your set \(A \) is in fact dense)\(^2\).

Solutions

1. There are 29 topologies on a set with 3 elements.

2. We need to check the 3 conditions from the definition of a topology.

 (a) \(\emptyset \in T_{F,p} \) since \(p \notin \emptyset \) and \(X \in T_{F,p} \) since the complement of \(X \) is finite.

 (b) Let \(U_i \in T_{F,p} \) for \(i \in \mathcal{I} \). We need to show that the union \(U = \bigcup_{i \in \mathcal{I}} U_i \) is also in \(T_{F,p} \). There are two cases to consider:

 (i) If \(p \notin U_i \) for all \(i \in \mathcal{I} \) then clearly \(p \notin U \) and so \(U \in T_{F,p} \).

\(^1\)Recall that a topological space \((X, \mathcal{T})\) is called second countable if it has a countable basis \(\mathcal{B} \).

\(^2\)Notice that the existence of a countable dense set \(A \) follows from part (a) of the exercise (remember we showed in class that \((\mathbb{R}^n, T_\mathcal{E})\) is second countable for all \(n \geq 1 \)). In fact, the solution to (a) along with having a concrete countable basis \(\mathcal{B} \) for \(T_\mathcal{E} \) provides a recipe for finding the set \(A \).
(ii) If \(p \in U_j \) for at least one index \(j \in I \) then \(X - U \) is finite. But \(X - U \subset X - U_j \) and a subset of a finite set is itself finite. Therefore \(U \in \mathcal{T}_{F,p} \).

(c) Given sets \(V_1, \ldots, V_n \in \mathcal{T}_{F,p} \), let \(V = \bigcap_{i=1}^n V_i \). We need to show that \(V \in \mathcal{T}_{F,p} \).

There are again two cases to distinguish:

(i) If \(p \notin V_j \) for some \(j \) in \(\{1, \ldots, n\} \) then clearly \(p \notin V \) and so \(V \in \mathcal{T}_{F,p} \).

(ii) If \(p \in V_i \) for all \(i = 1, \ldots, n \) then all the sets \(X - V_i \) are finite. But by DeMorgan’s laws we know that \(X - V = \bigcup_{i=1}^n (X - V_i) \). Since all the sets on the righthand side of this equality are finite, the lefthand side is also finite. Thus \(V \in \mathcal{T}_{F,p} \).

3. This is not a topology since \(X \) itself has finite complement and is not contained in \(\mathcal{T} \).

4. (a) Let \(\mathcal{B} = \{U_1, U_2, \ldots\} \) be a countable basis for \(X \). Pick an arbitrary point \(x_i \in U_i \) for all \(i = 1, 2, \ldots \). Define \(A \) to be

\[
A = \{x_1, x_2, \ldots\}
\]

Clearly \(A \) is countable since it has the same cardinality as \(\mathcal{B} \). To show that \(A \) is dense, pick any nonempty open set \(U \). Since \(\mathcal{B} \) is a basis, we can find a \(U_j \in \mathcal{B} \) such that \(U_j \subseteq U \). But then \(x_j \in A \cap U \) showing that \(A \cap U \neq \emptyset \).

(b) Recall that the following is a countable basis for \((\mathbb{R}, \mathcal{T}_E)\):

\[
\mathcal{B} = \{B_p(r) \mid p, r \in \mathbb{Q}, r > 0\}
\]

where as usual \(B_p(r) \) is the open ball centered at \(p \) and with radius \(r \). Using part (a) we can form \(A \) by picking a single element from each set in \(\mathcal{B} \). There are many choices here, all equally valid. A natural choice it to choose the point \(p \) itself from \(B_p(r) \). Since \(p \) is allowed to range through \(\mathbb{Q} \) we see that \(A = \mathbb{Q} \). This shows that the rational numbers are dense in \(\mathbb{R} \) (when we consider the Euclidean topology on \(\mathbb{R} \) but not necessarily with other topologies).