1. Let X be the set $X = \{1, 2, 3\}$. List all possible topologies on X. How many are there?

2. Let X be an infinite set and $p \in X$ some arbitrary element in X. Let $T_{F, p}$ be the collection of subsets of X which either have finite complement or don’t contain the point p. Show that $T_{F, p}$ is a topology on X (called the Fort topology).

3. Let X be an infinite set and consider the collection T of subsets of X defined as

$$T = \{\emptyset, \text{All subsets } U \text{ of } X \text{ with infinite complement}\}$$

Is T a topology on X? Explain your answer.

4. Let (X, \mathcal{T}) be a topological space and let $A \subseteq X$ be a subset of X. We say that A is dense in X if for each non-empty $U \in \mathcal{T}$ the intersection $A \cap U$ is non-empty. For example the set $A = X$ is always dense in X. A topological space is said to be separable if it has a countable dense subset.

 (a) Show that a second countable\footnote{Recall that a topological space (X, \mathcal{T}) is called second countable if it has a countable basis \mathcal{B}.} topological space is automatically separable (the converse is not true in general).

 (b) Let \mathcal{T}_E be the Euclidean topology on \mathbb{R}. Find a countable subset $A \subset \mathbb{R}$ which is dense in $(\mathbb{R}, \mathcal{T}_E)$ (you must show that your set A is in fact dense)\footnote{Notice that the existence of a countable dense set A follows from part (a) of the exercise (remember we showed in class that $(\mathbb{R}^n, \mathcal{T}_E)$ is second countable for all $n \geq 1$). In fact, the solution to (a) along with having a concrete countable basis \mathcal{B} for \mathcal{T}_E provides a recipe for finding the set A.}.

5. Show that a function $f : \mathbb{R}^n \to \mathbb{R}$ is continuous if and only if for every closed set $A \subseteq \mathbb{R}$ the preimage $B = f^{-1}(A)$ is a closed subset of \mathbb{R}^n.

6. This exercise shows that a partial converse of problem 4 is true. Namely, let (X, d) be a metric space and let \mathcal{T}_d be the metric topology induced by d. Show that if (X, \mathcal{T}_d) is separable then it is also second countable.

Solutions

1. There are 29 topologies on a set with 3 elements.
2. We need to check the 3 conditions from the definition of a topology.
(a) Let \(U \in T_{F,p} \) since \(p \notin \emptyset \) and \(X \in T_{F,p} \) since the complement of \(X \) is finite.
(b) Let \(U_i \in T_{F,p} \) for \(i \in I \). We need to show that the union \(U = \bigcup_{i \in I} U_i \) is also in \(T_{F,p} \). There are two cases to consider:
 (i) If \(p \notin U_i \) for all \(i \in I \) then clearly \(p \notin U \) and so \(U \in T_{F,p} \).
 (ii) If \(p \in U_j \) for at least one index \(j \in I \) then \(X - U_j \) is finite. But \(X - U \subset X - U_j \) and a subset of a finite set is itself finite. Therefore \(U \in T_{F,p} \).
(c) Given sets \(V_1, ..., V_n \in T_{F,p} \), let \(V = \bigcap_{i=1}^n V_i \). We need to show that \(V \in T_{F,p} \).
 There are again two cases to distinguish:
 (i) If \(p \notin V_j \) for some \(j \) in \(\{1, ..., n\} \) then clearly \(p \notin V \) and so \(V \in T_{F,p} \).
 (ii) If \(p \in V_i \) for all \(i = 1, ..., n \) then all the sets \(X - V_i \) are finite. But by DeMorgan’s laws we know that \(X - V = \bigcup_{i=1}^n (X - V_i) \). Since all the sets on the righthand side of this equality are finite, the lefthand side is also finite. Thus \(V \in T_{F,p} \).
3. This is not a topology since \(X \) itself has finite complement and is not contained in \(T \).
4. (a) Let \(\mathcal{B} = \{U_1, U_2, ...\} \) be a countable basis for \(X \). Pick an arbitrary point \(x_i \in U_i \) for all \(i = 1, 2, \). Define \(A \) to be
 \[
 A = \{x_1, x_2, ...
 \]
 Clearly \(A \) is countable since it has the same cardinality as \(\mathcal{B} \). To show that \(A \) is dense, pick any nonempty open set \(U \). Since \(\mathcal{B} \) is a basis, we can find a \(U_j \in \mathcal{B} \) such that \(U_j \subseteq U \). But then \(x_j \in A \cap U \) showing that \(A \cap U \neq \emptyset \).
 (b) Recall that the following is a countable basis for \((\mathbb{R}, \mathcal{T}_E) \):
 \[
 \mathcal{B} = \{B_p(r) \mid p, r \in \mathbb{Q}, r > 0\}
 \]
 where as usual \(B_p(r) \) is the open ball centered at \(p \) and with radius \(r \). Using part (a) we can form \(A \) by picking a single element from each set in \(\mathcal{B} \). There are many choices here, all equally valid. A natural choice it to choose the point \(p \) itself from \(B_p(r) \). Since \(p \) is allowed to range through \(\mathbb{Q} \) we see that \(A = \mathbb{Q} \). This shows that the rational numbers are dense in \(\mathbb{R} \) (when we consider the Euclidean topology on \(\mathbb{R} \) but not necessarily with other topologies).
5. Assume that \(f: \mathbb{R}^n \to \mathbb{R} \) is continuous. Let \(B \subseteq \mathbb{R} \) be closed set and define \(A \) to be \(f^{-1}(B) \). An easy check reveals that
 \[
 A = \mathbb{R}^n - f^{-1}(\mathbb{R} - B)
 \]
 Since \(f \) is continuous, the set \(f^{-1}(\mathbb{R} - B) \) is an open set (since \(\mathbb{R} - B \) is an open set) and so \(A \) is closed.
6. Let \(A \) be a dense countable set in \(X \) and define \(\mathcal{B} \) as
 \[
 \mathcal{B} = \{B_x(r) \mid x \in A, r \in \mathbb{Q}, r > 0\}
 \]
where $B_{x}(r) = \{ y \in X | d(x, y) < r \}$. Since A and \mathbb{Q} are countable then so is \mathcal{B}. We claim that \mathcal{B} is a basis for the metric topology \mathcal{T}_{d}. We start proving this by first showing that \mathcal{B} is the basis of some topology.

Claim 1: \mathcal{B} is the basis of some topology.

Proof. (Of claim 1) We check that the two conditions of being a basis are met.

(a) Given any point $p \in X$ we need to show that there is an element $U \in \mathcal{B}$ such that $p \in U$. Consider the open set $B_{p}(1)$. This is an open set and so the intersection $A \cap B_{x}(1) \neq \emptyset$. Pick an element $a \in A \cap B_{x}(1)$. Then $d(a, p) < 1$ and so $p \in B_{a}(1) \in \mathcal{B}$.

(b) Given two sets $U_{1}, U_{2} \in \mathcal{B}$ and a point $p \in U_{1} \cap U_{2}$ we need to show that there is a third set $U_{3} \in \mathcal{B}$ such that $p \in U_{3} \subseteq U_{1} \cap U_{2}$. Since $U_{1} \cap U_{2}$ is an open set, we can find an $\varepsilon > 0$ such that $B_{p}(2\varepsilon) \subseteq U_{1} \cap U_{2}$. But clearly $B_{p}(\varepsilon) \subseteq B_{p}(2\varepsilon) \subseteq U_{1} \cap U_{2}$. Since $B_{p}(\varepsilon)$ is a nonempty open set, we can find an element $a \in A \cap B_{p}(\varepsilon)$. Let ρ be any rational number with $d(p, a) < \rho < \varepsilon$ and let U_{3} be the set $B_{a}(\rho) \in \mathcal{B}$. Since $d(p, a) < \rho$ we see that $p \in U_{3}$. But on the other hand, given any point $y \in U_{3}$, by the triangle inequality for d we get

$$d(y, x) \leq d(y, a) + d(a, x) < \rho + \varepsilon < 2\varepsilon$$

Therefore $y \in B_{x}(2\varepsilon) \subseteq U_{1} \cap U_{2}$. Since this is true for all $y \in U_{3}$ we see that indeed $U_{3} \subseteq U_{1} \cap U_{2}$. This completes the proof of claim 1.

□

Claim 2: The topology generated by \mathcal{B} is the metric topology \mathcal{T}_{d}.

Proof. (Of claim 2) Let \mathcal{T}_{B} be the topology generated by \mathcal{B}. Since $\mathcal{B} \subseteq \mathcal{T}_{d}$ it follows that $\mathcal{T}_{B} \subseteq \mathcal{T}_{d}$. It remains to see the converse. For that purpose, pick any open set $U \in \mathcal{T}_{d}$. We need to show that U also belongs to \mathcal{T}_{B}. In other words, we need to show that U is a union of sets belonging to \mathcal{B}.

Let $p \in U$ be any point. Since U is open we can find an $\varepsilon > 0$ so that $B_{p}(2\varepsilon) \subseteq U$. Pick a point $a \in A \cap B_{p}(\varepsilon)$ and let $U_{p} = B_{a}(\varepsilon)$. Since $d(a, p) < \varepsilon$ we see that $p \in U_{p}$. Given any other element $y \in U_{p}$, using the triangle inequality again we find that

$$d(y, p) \leq d(y, a) + d(a, p) < \varepsilon + \varepsilon = 2\varepsilon$$

showing that $y \in B_{x}(2\varepsilon) \subseteq U$. Thus $U_{p} \subseteq U$. Doing this procedure for each $p \in U$ we get

$$U = \bigcup_{p \in U} U_{p} \quad U_{p} \in \mathcal{B}$$

showing that $U \in \mathcal{T}_{B}$. This completes the proof of claim 2. □

In conclusion, the claims 1 and 2 show that \mathcal{B} is a countable basis for \mathcal{T}_{d} and so (X, \mathcal{T}_{d}) is a second countable topological space.