1. The One Point Compactification

Definition 1.1. A compactification of a topological space \(X \) is a compact topological space \(Y \) containing \(X \) as a subspace.

Given any non-compact space \(X \), compactifications always exist. This section explores the smallest possible compactification obtained by adding a single point to \(X \) and extending the topology in a suitable way. The thus obtained compactification of \(X \) is called the **one-point compactification** of \(X \). Here are the details:

Given any non-compact space \(X \), define \(Y = X \cup \{p\} \) where \(p \) is some abstract point (and \(p \not\in X \)). Let \(T_X \) be the existent topology on \(X \). We define a new topology \(T_Y \) on \(Y \) as follows: A subset \(U \) of \(Y \) is open if either

1. \(p \not\in U \) and \(U \in T_X \) or
2. \(p \in U \) and \(X - U \) is a compact closed subset of \(X \).

Lemma 1.2. The collection \(T_Y \) of subsets of \(Y \) is a topology.

Proof. The proof comes down to checking the 3 properties of being a topology.

1. Clearly \(\emptyset \in T_Y \) since \(\emptyset \in T_X \subset T_Y \). On the other hand \(Y \in T_Y \) since \(Y = X \cup \{p\} \) and \(X - Y = \emptyset \) which is closed and compact.
2. Let \(U_i \in T_Y \) for \(i \in I \) and let \(U = \bigcup_{i \in I} U_i \). We need to show that \(U \) lies in \(T_Y \).
 - If \(p \not\in U \) then all the sets \(U_i \) are in \(T_X \) and we’re done. If \(p \in U \) then we can decompose \(I \) as \(I = I_0 \sqcup I_1 \) so that
 - (a) If \(i \in I_0 \) then \(p \not\in U_i \).
 - (b) If \(i \in I_1 \) then \(p \in U_i \). In this case let’s write \(U_i = A_i \cup \{p\} \) with \(A_i \subset X \) such that \(X - A_i \) is compact and closed.

 But then \(U = A \cup \{p\} \) with

 \[A = (\bigcup_{i \in I_0} U_i) \cup (\bigcup_{i \in I_1} A_i) \]

 From DeMorgan’s law we then find

 \[X - A = X - \left[(\bigcup_{i \in I_0} U_i) \cup (\bigcup_{i \in I_1} A_i) \right] = (\bigcap_{i \in I_0} (X - U_i)) \cap (\bigcap_{i \in I_1} (X - A_i)) \]

 which is a closed subset of \(X - A \) which in turn is compact. Thus \(X - A \) is itself compact and so \(U \) is in \(T_Y \) by definition.
3. Pick \(V_1, \ldots, V_n \in T_Y \) and set \(V = \bigcap_{i=1}^{n} V_i \). If \(p \in V \) then each \(V_i \) has the form \(V_i = A_i \cup \{p\} \) with \(X - A_i \) being compact and closed. Therefore \(V = A \cup \{p\} \) with \(A = \bigcap_{i=1}^{n} A_i \). To see that \(V \) is open we need to check that \(X - A \) is closed and compact:

 \[X - A = X - \bigcap_{i=1}^{n} A_i = \bigcup_{i=1}^{n} (X - A_i) \]

 The latter expression is a finite union of closed compact sets and is therefore itself closed and compact.

 If \(p \not\in V \) then at least one \(V_i \) contains \(p \). Up to re-ordering the summands \(V_i \) we can then write

 \[V_i \in T_X \quad \text{and} \quad V_j = A_j \cup \{p\} \]
for $i = 1, \ldots, m$ and $j = m + 1, \ldots, n$. Here $X - A_j$ is compact and closed, in particular A_j is open in X. But then
\[V = \bigcap_{i=1}^n V_i = (\bigcap_{i=1}^m V_i) \cap (\bigcap_{j=m+1}^n A_j) \]
which is a finite intersection of open sets in X and therefore an open set in X.

\[\square \]

Lemma 1.3. With the notation as above, X is a dense subspace of Y.

Proof. The lemma contains two claims – that X is dense in Y and that the subspace topology on X induced by T_Y coincides with T_X. The latter is a mere observation: Writing $T_Y|_X$ for the induced subspace topology on X we find that
\[T_Y|_X = \{ U \cap X | U \in T_Y \} \]
\[= \{ U \cap X | U \in T_X \text{ or } U = A \cup \{p\} \text{ with } X - A \text{ closed and compact} \} \]
\[= \{ U \cap X | U \in T_X \} \cup \{ U \cap X | U = A \cup \{p\} \text{ with } X - A \text{ closed and compact} \} \]
\[= T_X \cup \{ A | X - A \text{ is compact and } A \text{ is open} \} \]
\[= T_X \]
Thus is remains to see that X is dense in Y. This is equivalent to showing that $X = Y$. If the latter were not true then we would be forced to conclude that $X = Y$. But then $Y - X = \{p\}$ would have to be an open set. Since it has the form $\emptyset \cup \{p\}$ we would need $X - \emptyset = X$ to be compact and closed. But our assumption was that X is not compact. Thus we must have $X = Y$. \[\square \]

Lemma 1.4. Continuing with the notation as above, Y is a compact space.

Proof. Let \mathcal{F} be an open cover of Y. There must be some set $U_0 \in \mathcal{F}$ which contains p. But then $X - U_0$ is a compact set covered by \mathcal{F} and so there is a finite number of elements $U_1, \ldots, U_n \in \mathcal{F}$ whose union contains $X - U_0$. Then $\mathcal{F}' = \{ U_0, U_1, \ldots, U_n \}$ is a finite subcover of \mathcal{F} showing that Y is compact. \[\square \]

We summarize the last 3 lemmas in the following theorem.

Theorem 1.5 (One point compactification). Let X be a non-compact space and let $Y = X \cup \{p\}$ for some abstract point $p \notin X$. Define the topology T_Y on Y as
\[T_Y = T_X \cup \{ A \cup \{p\} | X - A \text{ is closed and compact } \} \]
Then Y is compact and X is a dense subspace of Y. The space Y is called the one-point compactification of X\(^{1}\).

2. **Exercises**

(1) Show that the one-point compactification of \mathbb{R}^n (with the Euclidean topology) is homeomorphic to the n-sphere
\[S^n = \{ x \in \mathbb{R}^{n+1} | |x| = 1 \} \]
equipped with the relative topology.

\(^1\)If X is itself compact then the theorem is still true except that X is no longer dense in Y.\]
(2) Define a “two-point compactification” of a non-compact space X. Show that the two-point compactification of $S^1 \times [0,1]$ is again homeomorphic to S^2.