1. Which of the following is logically equivalent to the negation of \(\exists r \ni (r < 1 \text{ AND } r^2 > 1) \)? (There are TWO correct answers.)

(a) \(\forall r \ (r^2 \leq 1 \text{ OR } r \geq 1) \)
(b) \(\exists r \ni (r \geq 1 \text{ AND } r^2 \geq 1) \)
(c) \(\forall r \ (r < 1 \Rightarrow r^2 < 1) \)
(d) \(\forall r \ (r < 1 \Rightarrow r^2 \leq 1) \)
(e) \(\forall r \ (r \geq 1 \text{ OR } r^2 < 1) \)
(f) \(\exists r \ni (r < 1 \text{ OR } r^2 > 1) \)

2. Which of the following is logically equivalent to the negation of \(\forall r \exists t \ni (x < t \Rightarrow y < r) \)? (There is only one correct answer.)

(a) \(\forall r \exists t \ni (x \geq t \Rightarrow y \geq r) \)
(b) \(\exists r \exists t \ni \forall x (x < t \text{ AND } y \geq r) \)
(c) \(\exists r \ni \forall t (x \geq t \text{ AND } y \geq r) \)
(d) \(\forall r \exists t (x < t \text{ OR } y \geq r) \)
(e) \(\exists r \ni \forall t (x \geq t \text{ AND } y < r) \)
(f) \(\forall r \exists t (x < t \text{ AND } y \geq r) \)
(g) \(\forall r \ni \exists t (y \geq r \Rightarrow x \geq t) \)
(h) none of these.

3. Which of the following is logically equivalent to the negation of \(\forall r \exists t \ni (x < t \Rightarrow y < r) \)? (There is only one correct answer.)

(a) \(\forall r \exists t \ni (x \geq t \Rightarrow y \geq r) \)
(b) \(\exists r \ni \forall t (x < t \text{ AND } y \geq r) \)
(c) \(\exists r \ni \forall t (x \geq t \text{ AND } y \geq r) \)
(d) \(\exists r \ni \forall t (x < t \text{ OR } y \geq r) \)
(e) \(\exists r \ni \forall t (x \geq t \text{ AND } y < r) \)
(f) \(\forall r \exists t (x < t \text{ AND } y \geq r) \)
(g) \(\exists r \ni \forall t(y \geq r \Rightarrow x \geq t) \)
(h) none of these.

4. Solve \(x + \sqrt{2 - x} = 0 \). (This means to prove your answer is correct.)

5. Prove that if \(x \) is an irrational number and \(r \) is a rational number then \(x + r \) is irrational.

6. Let \(f : \mathbb{R} \to \mathbb{R} \) be defined by \(f(x) = 3x + 2 \).

(a) Prove that \(f \) is 1-1.

(b) Prove that \(f \) is onto.

(c) Find \(f^{-1}(x) \).

7. Let \(f : \mathbb{N} \to \mathbb{N} \) be defined by \(f(x) = 3x + 2 \). Prove that \(f \) is not onto.

8. Let \(f : A \to B \) and \(g : B \to C \) both be onto. Prove \(g \circ f \) is onto.

9. Let \(f : A \to B \) and \(g : B \to C \). Prove that if \(g \circ f \) is 1-1 then \(f \) is 1-1.

10. Use the Archimedean property to prove that \(\text{inf}(S) = 0 \) where \(S = \left\{ \frac{2}{n+1} \mid n \in \mathbb{N} \right\} \).
11. Use the Archimedean property to prove that \(\frac{n}{2n+1} \to \frac{1}{2} \).

12. Let \(S = \{ x \in \mathbb{R} | x < 3 \} \) prove that \(\text{sup}(S) = 3 \).

13. Let \(x \) be a positive real number. Use mathematical induction to prove the following inequality:
\[1 + nx \leq (1 + x)^n \] for every \(n \in \mathbb{N} \).

14. Use mathematical induction to prove that
\[\sum_{k=1}^{n} k^3 = \frac{n^2(n+1)^2}{4} \] \(\forall n \in \mathbb{N} \).

15. Prove that if a sequence is convergent then it is bounded. Hint: Use the fact that a sequence \(s_n \) is bounded if and only if \(\exists M \ni \forall n \in \mathbb{N}, |s_n| \leq M \).

16. Prove that \(x_n \to c \) if and only if \((x_n - c) \to 0 \).

17. Prove that if \(x_n \to a \) and \(y_n \to b \) then \(x_n + y_n \to a + b \).

18. Prove that if \(x_n \to 0 \) and \(\{y_n\} \) is bounded then \(x_n y_n \to 0 \). Hint: Use the fact that a sequence \(s_n \) is bounded if and only if \(\exists M \ni \forall n \in \mathbb{N}, |s_n| \leq M \).

19. Prove that if a sequence converges to \(b \) then every subsequence converges to \(b \).

20. Assume \(f : A \to B \) is a function. **Circle true or false.**

(a) **T** **F** If for each \(a \in A \) there is a \(b \in B \) such that \(f(a) = b \) then \(f \) is onto.

(b) **T** **F** If \(f(x_1) \neq f(x_2) \) whenever \(x_1 \neq x_2 \) then \(f \) is 1-1.

(c) **T** **F** If \(A \) is a bounded subset of \(\mathbb{R} \) then \(\inf(A) \) is the smallest element in \(A \).

(d) **T** **F** If \(A \subseteq \mathbb{R} \) then \(v = \inf(A) \) if and only if \(v \) is a lower bound of \(A \) and given \(r \in \mathbb{R} \) with \(r > v \) then there is a number \(x \in A \) with \(x < r \).

(e) **T** **F** If \(A \subseteq \mathbb{R} \) then \(v = \inf(A) \) if and only if \(v \leq a \forall a \in A \) and given \(\epsilon > 0 \) there is a number \(x \in A \) with \(x > v + \epsilon \).

(f) **T** **F** If \(A \subseteq \mathbb{R} \) then \(u = \sup(A) \) if and only if \(u \geq a \forall a \in A \) and given \(r \in \mathbb{R} \) with \(r > u \) then there is a number \(x \in A \) with \(x < r \).

(g) **T** **F** If \(A \subseteq \mathbb{R} \) then \(u = \sup(A) \) if and only if \(u \geq a \forall a \in A \) and given \(\epsilon > 0 \) there is a number \(x \in A \) with \(x > u - \epsilon \).

(h) **T** **F** If \(x_n \to a \) and \(\{y_n\} \) is bounded then \(x_n y_n \to a \).

(i) **T** **F** “Sup” or “Supremum” means the same thing as “greatest lower bound”.

(j) **T** **F** Between any two real numbers there is always an irrational number.
(k) T F The proof that between any two real numbers there is always a rational number depends on the completeness property of \mathbb{R}.