Math 373 Exam 2 Supplement for Review. This is only a supplement. All problems like those on the homework and quizzes may appear on the exam. Remember - it’s not whether something is true or false, it’s how you write the proof that’s important.

1. Write the domain of \(H \) in interval notation, if \(H(x) = \frac{\sqrt{x^2 - 4}}{x + 11} \).

2. Let \(L : \mathbb{Z} \rightarrow \mathbb{Z} \) by \(L(x) = 1 - 2x \). Is \(L \) surjective? Prove your answer.

3. What is the domain of \(L \)?

4. Let \(s : \mathbb{R} \rightarrow \mathbb{R}^+ \) by \(s(x) = x^2 \). Is \(s \) surjective? Prove your answer.

5. What is the domain of \(s \)?

6. Let \(p : \mathbb{R} \rightarrow \mathbb{R}^+ \) by \(p(x) = x^2 \). Is \(p \) injective? Prove your answer.

7. What is the domain of \(p \)?

8. Let \(G : \mathbb{R}^+ \rightarrow \mathbb{R}^+ \) by \(G(x) = x^2 \). Is \(G \) injective? Prove your answer.

9. What is the domain of \(G \)?

10. Let \(f(x) = 1 - 5x \) and \(g(x) = 3x + 1 \). Find and simplify:
 \((f \circ g)(x), (f \circ f)(x), (g \circ f)(x), \) and \((g \circ g)(x)\).

11. Complete this definition: The sequence \(\{x_n\} \) converges to \(x \) if and only if

12. Write the negation of the above definition using logical symbols:

13. Write the negation of \(\exists r \in \mathbb{R} \ \exists s \in \mathbb{R} \ rs > 0 \) using logical symbols.

14. Which of the above is true, the statement or its negation? Prove your answer.

15. Write the negation of \(\forall r \in \mathbb{R} \ \exists s \in \mathbb{R} \ \exists s > 0 \) using logical symbols.

16. Which of the above is true, the statement or its negation? Prove your answer.

17. Write the negation of \(\forall r \in \mathbb{R} \ \exists s \in \mathbb{Z} \ \exists |r - s| < 2 \) using logical symbols.

18. Which of the above is true, the statement or its negation? (Proof not necessary.)

19. Write the negation of \(\exists s \in \mathbb{Z} \ \forall r \in \mathbb{R} \ |r - s| < 2 \) using logical symbols.

20. Which of the above is true, the statement or its negation? (Proof not necessary.)

21. Prove that \(A \cap \bigcup_{j=1}^{\infty} S_j = \bigcup_{j=1}^{\infty} A \cap S_j \).
22. Let \(A = \{x | x^2 < 4\} \) and let \(B = \{x | x < 2\} \). Is \(A \subseteq B \)? Prove your answer. Is \(B \subseteq A \)? Prove your answer.

23. Let \(f : \mathbb{R} \to \mathbb{R} \) by \(f(x) = x^2 \). Let \(A = (-1, 4) \ B = (-4, -1) \ C = (1, 4) \)

\[
\overrightarrow{f}(A) = \ldots \overrightarrow{f}(A) = \\
\overrightarrow{f}(B) = \ldots \overrightarrow{f}(B) = \\
\overrightarrow{f}(C) = \ldots \overrightarrow{f}(C) =
\]

24. Let \(f : X \to Y \). Prove that \(\overrightarrow{f}(A \cap B) \subseteq \overrightarrow{f}(A) \cap \overrightarrow{f}(B) \).

25. Let \(f : X \to Y \). Prove that if \(f \) is injective then \(\overrightarrow{f}(A) \cap \overrightarrow{f}(B) \subseteq \overrightarrow{f}(A \cap B) \).

26. Let \(f : X \to Y \) and let \(A_1 \) and \(A_2 \) be subsets of \(Y \).

Prove that \(\overrightarrow{f}(A_1 \cup A_2) \subseteq \overrightarrow{f}(A_1) \cup \overrightarrow{f}(A_2) \).

27. Give an example to show that \(\overrightarrow{f}(A_1) \cap \overrightarrow{f}(A_2) \) need not be a subset of \(\overrightarrow{f}(A_1 \cap A_2) \).

28. Let \(f : X \to Y \) and \(g : Y \to Z \). Prove that if \(g \) and \(f \) are injective then \(g \circ f \) is injective.

29. Let \(f : X \to Y \) and \(g : Y \to Z \). Prove that if \(g \circ f \) is injective then \(f \) is injective.

30. Suppose \(\{a_n\} \) converges to \(a \) and \(c \neq 0 \). Then \(\{ca_n\} \) converges to \(ca \).

31. Suppose \(\{a_n\} \) converges to \(a \) and \(\{b_n\} \) converges to \(b \). Then \(\{a_n - b_n\} \) converges to \(a - b \).

32. Prove that if \(\{x_n\} \) converges to \(x \). Then \(\left\{ \frac{3x_n}{2} \right\} \) converges to \(\frac{3x}{2} \) using only the definition.

33. Prove that \(\left\{ \frac{2n - 3}{n + 1} \right\} \) converges to 2 using only the definition.