Homework on Section 22 of TOPOLOGY

3. Let \(A = \{ x \times y \mid x \geq 0 \text{ or } y = 0 \} \subset \mathbb{R}^2 \). Show that the projection map onto the first coordinate, restricted to \(A \), is a quotient map.

Solution Call the restriction of the projection map \(q \). It is easy to see that \(q \) is onto.

Consider \((a, b) \subset \mathbb{R} \).

\(q^{-1}(a, b) = ((a, b) \times \mathbb{R}) \cap A \) which is clearly open. As (i) an open set in \(\mathbb{R} \) is a union of open intervals, (ii) \(q^{-1}(U) = \bigcup q^{-1}(V_a) \) and (iii) union of open sets is open, it follows that preimage of an open set is open. So \(q \) is continuous.

We want to show that if \(q^{-1}(U) \) is open in \(A \) for some \(U \subset \mathbb{R} \), then \(U \) is open.

Clearly, \(U \subset (-\infty, 0) \) is open in \(\mathbb{R} \) if and only if \(q^{-1}(U) = U \times \{0\} \) is open in \(A \).

For \(U \subset (0, \infty) \), we have \(q^{-1}(U) = U \times \mathbb{R} \) which is open in \(A \) if and only if \(U \) is open in \(\mathbb{R} \).

Now suppose we have a set \(U \subset \mathbb{R} \) such that \(0 \in U \) and \(q^{-1}(U) \) is open in \(A \).

Then \(q^{-1}(U) \cap \{ x \times y \mid y = 0, x < 0 \} \) is open and from the above discussion the image of this, which equals \(U \cap (-\infty, 0) \), is open.

Similarly, \(q^{-1}(U) \cap \{ x \times y \mid x > 0 \} \) is open and so it follows that \(U \cap (0, \infty) \) is open.

Finally, there exists a basis element \((a, b) \times (c, d) \) of the product topology on \(\mathbb{R}^2 \) such that \(0 \times 0 \in (a, b) \times (c, d) \subset q^{-1}(U) \). It follows that \(0 \in (a, b) \subset U \).

Thus \(U \) is the union of three open sets and therefore it is open.

The map \(q \) is not open. The set \(V = \{ x \times y \mid y > 3 \} \cap A \) is an open set in \(A \). Its image \([0, \infty)\) is not open in \(\mathbb{R} \).

The map \(q \) is not closed. The set \(F = \{ x \times y \mid y = \frac{1}{x}, x > 0 \} \) is a closed subset of \(A \). Its image \((0, \infty)\) is not a closed subset of \(\mathbb{R} \).

4a. Define an equivalence relation on \(X = \mathbb{R}^2 \) as

\[
x_0 \times y_0 \sim x_1 \times y_1 \text{ if } x_0 + y_0^2 = x_1 + y_1^2.
\]

Let \(X^* \) be the set of equivalence classes with \(U \subset X^* \) defined to be open if and only if \(p^{-1}(U) \subset \mathbb{R}^2 \) is open, where \(p \) is the map that carries a point in \(\mathbb{R}^2 \) to its equivalence class. (See the definition and discussion on page 138 and the definition on page 139.) Which familiar space is \(X^* \) homeomorphic to?

Solution We claim that \(X^* \) is homeomorphic to \(\mathbb{R} \) with the standard topology generated by open intervals and a homeomorphism is given by mapping the equivalence class of an element \(a \times b \) of \(\mathbb{R}^2 \) to \(a + b' \in \mathbb{R} \).

Let \(g([a \times b]) = g([a' \times b']) \). Then \(a + b^2 = a' + b'^2 \) and therefore \(a \times b \sim a' \times b' \). It follows that \([a \times b] = [a' \times b'] \). The map \(g \) is one-to-one.

The map \(g \) is onto, as given \(r \in \mathbb{R} \), \(g \) maps the equivalence class of \(r \times 0 \) to \(r \).

For continuity of \(g \), we note that

\[
p^{-1}g^{-1}(c, d) = \{ x \times y \in \mathbb{R}^2 \mid c < x + y^2 < d \},
\]

where \((c, d) \subset \mathbb{R} \) is an open interval. It is easy to see that this preimage in \(\mathbb{R}^2 \) is open. It follows that \(g \) is continuous.

Finally, let \(U \subset X^* \) be an open set. We want to show that \(g(U) \subset \mathbb{R} \) is open.

Let \(r \in g(U) \). Then since \(g(r \times 0) = r \), and \(g \) is one-to-one, it follows that \([r \times 0] \in U \) or equivalently, \(r \times 0 \in p^{-1}(U) \).

Since \(U \) is open, by the definition of the topology on \(X^* \), \(p^{-1}(U) \) is open in \(\mathbb{R}^2 \). So there exists intervals \((c, d) \) and \((e, f) \) such that

\[
r \times 0 \in (c, d) \times (e, f) \subset p^{-1}(U).
\]

Clearly, we have \(c < r < d \) and \(e < f \). So if \(c < x < d \) then \(x \times 0 \in p^{-1}(U) \Leftrightarrow [x \times 0] \in U \Rightarrow x = x + 0^2 \in g(U) \). It follows that \(r \in (c, d) \subset g(U) \). So \(g(U) \) is open.

We have shown that \(g \) is a homeomorphism.