MULTIPLE CHOICE. 3 points each

1. Simplify the expression \(\left(\frac{a^{-3}b^{-4}}{a^{-2}b^3} \right)^3 \) so that none of the exponents are written as negative.

 a) \(\frac{1}{a^3b^9} \)
 b) \(a^2b^6 \)
 c) \(a^7b^{10} \)
 d) \(\frac{1}{a^3b^9} \)

2. The equation of the line passing through (15, -8) and perpendicular to the line \(y = \frac{5}{3}x - 7 \) is:

 a) \(y = -\frac{3}{5}x + 1 \)
 b) \(y = \frac{3}{5}x - 17 \)
 c) \(y = \frac{5}{3}x - 8 \)
 d) \(y = -\frac{5}{3}x + 17 \)

3. Which of the following is the domain of the function \(f(x) = \sqrt{x - 9} \)?

 a) \((9, \infty)\)
 b) \([9, \infty)\)
 c) \(x \neq 9\)
 d) \(x = 2005\)

4. The function \(f(x) = -x^2 + 4x + 4 \) is:

 a) even
 b) odd
 c) odd and even
 d) neither

5. If \(f(x) = \frac{2}{x} \), which of the following equals \(f^{-1}(x) \)?

 a) \(f^{-1}(x) = \frac{x}{2} + 4 \)
 b) \(f^{-1}(x) = \frac{2 + 3x}{x} \)
 c) \(f^{-1}(x) = \frac{2}{x} \)
 d) \(f^{-1}(x) = 2 - x \)

6. Which of the following is equal to \(3 \log x - 3 \log y \)?

 a) \(\log (3x - 3y) \)
 b) \(\log \left(\frac{3x}{3y} \right) \)
 c) \(\log \left(\frac{x^3}{y^3} \right) \)
 d) \(\log (x^4 - y^3) \)

7. Assume that \(x, y, z, \) are positive. Which of the following is equal to \(\log \left(\frac{\sqrt{x^2 + y^2}}{\sqrt{z^2}} \right)^2 \)?

 a) \(\log (x^2 + y^2) \log (z) \)
 b) \(2 \log (y) + \log (z) \)
 c) \(2 \log (y) + \log (z) - \frac{1}{2} \log (x) \)
 d) \(2 \log (y) + \log (z) - \sqrt{\log (x)} \)

8. Which of the following are equations of the vertical asymptotes of \(F(x) = \frac{2y^2}{x^2 - 1} \)?

 a) \(x = 2 \)
 b) \(y = 1 \)
 c) \(y = -1 \)
 d) \(x = 1 \)
 e) \(z = -1 \)
9. Match each function with the horizontal asymptote(s) that would appear on its graph.

\[f(x) = \frac{3x^2 + 2}{2x^3} \quad \text{No horizontal asymptote} \]

\[g(x) = \frac{1}{2x^3 + 1} \quad y = 0 \]

\[h(x) = \frac{3x^2 + 2}{2x^2 + 1} \quad y = \frac{3}{2} \]

II Each subquestion is worth 4 points unless mentioned otherwise. Please write the answer in the place provided. For partial credit, show your work.

1. Write the given complex number in the standard form \(a + bi\).
 i. \((5 - 5i)(3 - 4i)\)

 Answer:

 ii. \(\frac{5 - 5i}{3 + 4i}\)

 Answer:

2. Solve the inequality \(1 < 3x + 4 \leq 13\) and write your solution in the interval notation.

 Answer:
3. Solve the inequality $|2x - 3| < 5$ and write your solution in interval notation.

Answer:

4. If $f(x) = x^2 - x + 1$ and $g(x) = 2x + 1$, determine
 i. $f(2) + 5$

Answer:

ii. $g(f(x))$

Answer:
5. Let \(g(x) = \begin{cases} \quad 2x + 1 & \text{if } x < 2 \\ \quad 3 - x & \text{if } x \geq 2 \end{cases} \). Evaluate \(g(0) \) and \(g(4) \).

Answer: \(g(0) = \) \(g(4) = \)

6. Write the zeros of \(P(x) = (x - 4)^2(x + 2)(x + 5)^2 \). State the multiplicity of each zero.

<table>
<thead>
<tr>
<th>zero</th>
<th>multiplicity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7. Consider the line that passes through \((6, -4)\) and \((1, 5)\).

i. Find its slope.

Answer:

ii. Find the equation of this line and write it in the form \(y = mx + b \).

Answer:
8. Completely factor the expression: $8x^3 + 10x - 25$.

Answer:

9. The perimeter of a rectangle is 140 feet. Label the width of the rectangle w, the length l and the area A.

i. Write w as a function of l.

Answer:* $w = $

ii. Write A as a function of l.

Answer:* $A = $

Note: Show all your work for full credit.

10. Solve the inequality \(\frac{(x+2)(x-3)}{x-5} \leq 0 \) and write your solution in the interval notation.

Answer:* \(x \in \)