8. \(f(x, y) = \sqrt{x^2 + y^2} - 1 + \ln(4 - x^2 - y^2). \)

We need \(x^2 + y^2 - 1 \geq 0 \), \(\Rightarrow x^2 + y^2 \geq 1 \).

and \(4 - x^2 - y^2 > 0 \), \(\Rightarrow x^2 + y^2 < 4 \),

not due to \(\ln 0 \) is not defined.

Our domain \(D \) is in both sets.

\(D \) is the domain area bounded by \(x^2 + y^2 \leq 1 \) and \(x^2 + y^2 = 4 \), but excluding the latter circle.

15. (a) \(f(x, y) = |x| + |y| \) has traces \(m x = k \) and \(y = k \) that are absolute value functions \(z = \text{const.} + |y| \) and \(z = \text{const.} + |x| \) respectively.

So, the graph of \(f(x, y) \) looks like this along the \(x \)-axis: so V.

(b) \(f(x, y) = |x| y \) has traces \(m x = k \) that are \(z = |k|y \).

The graph of \(f(x, y) \) is triangular along \(x \)-axis, touching the axis for every \(k \), so V.

(c) \(f(x, y) = \frac{1}{1 + x^2 + y^2} \).

Since \(x^2 \) and \(y^2 \) is in the denominator, as \(x \) gets large, the value of \(f \) gets smaller and similarly for \(y \). That is, \(f \) has maximum value at the origin. so I.
(d) \(f(x, y) = (x^2 - y^2)^2 \)
Because of the square on the outside, \(f(x, y) = (x^2 - y^2)^2 = (y^2 - x^2)^2 \), i.e. \(f \) is symmetric in \(x \) and \(y \), so not \(II \) and \(III \) is sinusoidal (sine or cosine) so \(IV \).

(e) \(f(x, y) = (x - y)^2 \). Has traces in \(z = 0 \) of \((x - y)^2 = 0 \)
\[\Rightarrow x = y. \] That is, the graph of \(f \) on the xy-plane is \(y = x \). So \(II \).

(f) \(f(x, y) = \sin(x|1 + |y|). \) The only graph that goes up and down enough to be that of sine is \(III \).

16 \(f(x, y) = \sqrt{16 - x^2 - 16y^2} \). Need \(16 - x^2 - 16y^2 \geq 0 \)
\[\frac{x^2}{16} + y^2 \leq 1. \]
\[\Rightarrow \text{Domain is inside the ellipse } \frac{x^2}{16} + y^2 \leq 1. \]
Passing thru \((4,0), (0,1), (4,0), (0,-1)\).

Traces in \(x=k \).
\[z = \sqrt{16 - k^2 - 16y^2} \]
For \(k > 0 \), this is upper half of ellipse.

Traces in \(y=k \).
\[z = \sqrt{16 - x^2 - k^2} \]
For \(k = 0 \), upper semi-circle of radius \(x \). For \(k \) between \(0 \& 4 \), we have smaller circles.

Traces in \(z=k \).
\[k = \sqrt{16 - x^2 - 16y^2} \]
For \(k = 0 \), we have the upper half of an ellipse. For \(k \) between \(0 \& 4 \), we have smaller ellipses.

Quick and easy! Take \(z = \sqrt{16 - x^2 - 16y^2} \) & square both sides.
\[z^2 = 16 - x^2 - 16y^2 \]
so \(x^2 + 16y^2 + z^2 = 16 \)
\[\Rightarrow \frac{x^2}{16} + \frac{y^2}{1} + \frac{z^2}{16} = 1 \]
so graph of \(f \) is the upper half of an ellipsoid.
If \(f(x, y) = x^2 - y^2 \), (see example 7.)

Traces in \(x = k \) are \(z = k^2 - y^2 \).

Traces in \(y = k \) are \(z = x^2 - k^2 \).

Traces in \(z = k \) are \(k = x^2 - y^2 \).

So the graph looks like

Traces in \(x = k \), are
(a) \(x^2 - y^2 = k^2 + 1 \) hyperbolas
Traces in \(y = k \), are
\(z^2 - x^2 = k^2 - 1 \) hyperbolas
Traces in \(z = k \), are
\(x^2 + y^2 = k^2 - 1 \) so circles
for \(|k| > 1 \)

(b) \(x^2 - y^2 - z^2 = 1 \) is still a hyperboloid of two sheets,
but the traces are circles along the \(x \)-axis instead of in the \(z \)-axis as in (a).