Math 283 Quiz 3 Section 1: Sept 19

Name: SATOKO

If you cannot complete a problem (perhaps because you forgot a formula) but you think you know how, please describe. Correct methods will receive partial credits.

1. Let \(f(x, y) = \sqrt{x + y + 1} \).

 (a) Evaluate \(f(1, 2) \).

 \[
 f(1, 2) = \sqrt{1 + 2 + 1} = 2
 \]

 (b) Find and sketch the domain of \(f \).

 \[
 x + y + 1 \geq 0, \quad y \geq -x - 1
 \]

 \(y = -x - 1 \) is a line with slope \(-1\) and \(y \)-intercept \(-1\).

2. Which of the following best describes the traces of \(z = x^2 - y^2 \) in \(y \) = constant (i.e., parallel to the \(xz \)-plane)?

 (a) upward opening parabolas
 (b) downward opening parabolas
 (c) hyperbolas
 (d) circles

3. Find the limit. Extra point: what is the shape of the curve?

 \[
 \lim_{t \to \pi/2} (t, \sin t, \cos t) = \left(\frac{\pi}{2}, 0, -1 \right)
 \]

 Sketch a graph along \(x \)-axis:

4. Given a point \(P \) whose cylindrical coordinates are \((2, 3\pi/4, 3) \), answer the following questions.

 (a) Above or below which quadrant is point \(P \) located? (That is, the projected point \((2, 3\pi/4, 0) \) onto the \(xy \)-plane is in which quadrant?)

 \[
 x = 2 \cos \left(\frac{3\pi}{4} \right) = -\sqrt{2}, \quad y = 2 \sin \left(\frac{3\pi}{4} \right) = \sqrt{2}
 \]

 \[
 \left(-\sqrt{2}, \sqrt{2}, 3 \right)
 \]

 \[
 \left(\frac{\sqrt{2}}{2}, \frac{-\sqrt{2}}{2}, \frac{3}{2} \right)
 \]

 \(-\sqrt{2}, \sqrt{2}, 3 \)

 (b) What is the point \(P \) called in rectangular coordinates?