Math 283 Quiz 4 Section 5: Oct 3

If you cannot complete a problem (perhaps because you forgot a formula) but you think you know how, please describe. Correct methods will receive partial credits.

1. Consider the parametric surface described by \(\mathbf{r}(u, v) = (u \cos v, u \sin v, v) \).
The grid-curves when \(u \) is a constant have which of the following shapes? (multiple-choice)
 \(\mathbf{r}'(u, v) = (u \cos v, u \sin v, 1) \)
 (a) lines
 (b) hyperbolas
 (c) parabolas
 (d) helixes

2. The arc length of \(\mathbf{r}(t) \) for \(a \leq t \leq b \) is given by \(\int_a^b |\mathbf{r}'(t)| \, dt \). Given \(\mathbf{r}(t) = t^2 \mathbf{i} + 2t \mathbf{j} + e^{-t} \mathbf{k}, \) set up (but not evaluate) the arc length integral for \(0 \leq t \leq 1 \).
 \[
 |\mathbf{r}'(t)| = \sqrt{9t^4 + 4 + e^{-2t}}
 \]
 \[
 L = \int_0^1 \sqrt{9t^4 + 4 + e^{-2t}} \, dt
 \]

3. The position of a particle is given by \(\mathbf{r}(t) = (2t, t, e^t) \). Find
 (a) the velocity of the particle.
 \[
 \mathbf{v}(t) = \mathbf{r}'(t) = <2, 1, e^t>
 \]
 (b) the speed of the particle.
 \[
 \text{Speed} = |\mathbf{v}(t)| = \sqrt{2^2 + 1^2 + (e^t)^2} = \sqrt{5 + e^{2t}}
 \]