1. A perpetuity pays 1 at the end of every year plus an additional 1 at the end of every second year. The present value of the perpetuity is K for $i \geq 0$. Determine K in terms of i (simplify!)

2. Annual deposits of 10 are made into a fund for 20 years. 21 years after the last deposit, payment of X is made from the fund. This payment is repeated annually forever. Find the annual interest rate, if $X = 258$.

3. A person deposits 100 at the beginning of each year for 20 years. Simple interest at an annual rate of i is credited to each deposit from the date of deposit, to the end of 20-year period. The total amount thus accumulated (at the end of 20-year period) is 2840. If instead, compound interest had been credited at an effective annual rate of i, what would the accumulated value of these deposits have been at the end of 20 years?

4. I borrow 500 from the bank at time 0, at an interest rate of 0.10 per annum effective. I am to repay the loan by $n - 1$ annual installments of X, followed by a drop payment at time n of less then X.

(a) If $X = 80$, find n and the value of the drop payment.

(b) What happens if $X = 30$? What is the smallest possible value of X?

5. A sum, P, is used to buy a deferred perpetuity-due of 1 payable annually. The effective annual rate of interest is $i, i > 0$. Calculate the deferred period. Show work!

(A) $\ln\left(\frac{P}{d}\right)$ (B) $1 - \frac{\ln(iP)}{\delta}$ (C) $-\frac{\ln(iP)}{\delta}$ (D) $1 + \frac{\ln(dp)}{\delta}$ (E) $\frac{\ln(dp)}{\delta}$.