1. An annuity consists of \(n \) payments of 1, the first to be made at the end of 7 years and the others to be made at three year intervals thereafter. The rate of interest is \(i \) per annum effective. Derive an expression for the present value of this annuity in terms of \(a_7, a_7 \), and \(a_{3n+7} \).

2. Present value of a series of payments of 2 at the end of every 8 years forever is equal to 5. Calculate the effective rate of interest.

3. A perpetuity pays 1 at the end of every year, except that it pays 0 at the end of every 4th year. The effective interest rate is \(i \). Is the present value equal to \(\frac{s_3}{is_4} \)? Explain!

4. A man deposits $50 at the end of each quarter for 10 years. Find the total amount of interest that he has accumulated at the end of 10 years, if \(i = 0.045 \) for the first 5 years, and \(i^{(2)} = 0.05 \) for the second 5 years.

5. An annuity pays 1 at the end of each 4-year period for 40 years. Given \(a_4 = k \), find the present value of the annuity. Show work!

 \(\text{(A)} \frac{1-(1-ik)^3}{1-(1-ik)^5} \) \(\quad \text{(B)} \frac{1-(1-ik)^{30}}{1-(1-ik)^5} \) \(\quad \text{(C)} \frac{1-(1-ik)^5}{1-(1-ik)^6} \) \(\quad \text{(D)} \frac{1-(1-ik)^{30}}{(1-ik)^{20}-1} \) \(\quad \text{(E)} \frac{1-(1-ik)^5}{(1-ik)^{20}-1} \).