1. Determine whether the statement is true or false. If it is true, explain why. If it is false, give an explanation or a counterexample.

 a) \(\lim_{x \to 4} \frac{x^2 - 16}{x - 4} = \lim_{x \to 4} (x + 4); \)

 b) If \(\lim_{x \to 3} f(x)g(x) \) exists, then the limit must be \(f(3)g(3); \)

 c) If \(f \) is continuous at \(a \), then \(f \) is differentiable at \(a; \)

 d) If \(f \) is continuous on \([−1, 1], f(−1) = 4 \) and \(f(1) = 3, \) then there is \(c \) with \(|c| < 1 \) such that \(f(c) = \pi. \)

2. Sketch the graph of a function that satisfy all conditions:

 \(\lim_{x \to -\infty} f(x) = -2, \lim_{x \to \infty} f(x) = 0, \lim_{x \to -3} f(x) = \infty, \lim_{x \to 3^-} f(x) = -\infty, \)

 and \(f \) is continuous from the right at 3.

3. Find the limits if they exist.

 a) \(\lim_{x \to 1^+} \frac{x^2 - 9}{x^2 + 2x - 3}; \)

 b) \(\lim_{h \to 0} \frac{(h - 1)^3 + 1}{h}; \)

 c) \(\lim_{x \to 3} \frac{\sqrt{x + 6} - x}{x^3 - 3x^2}; \)

 d) \(\lim_{x \to \infty} \frac{\sqrt{x^2 - 9}}{2x - 6}; \)

 e) \(\lim_{x \to \pi^-} \ln(\sin x); \)

 f) \(\lim_{x \to 0^+} \arctan(1/x); \)

 g) \(\lim_{x \to -\infty} (\sqrt{x^2 + 4x + 1} + x). \)

4. Use the Intermediate Value Theorem to show that the equation \(\cos \sqrt{x} = e^x - 2 \) has a root in \((0, 1). \)

5. If a ball is thrown into the air with a velocity of 44 ft/s, its height in feet \(t \) seconds later is given by \(y = 44t - 16t^2. \)

 a) Find the average velocity for the time period beginning when \(t = 2 \) and lasting for 0.5 seconds and 0.1 seconds.

 b) Find the instantaneous velocity when \(t = 2. \)
6. Graph the function \(f(x) = \begin{cases} 3 + x & \text{if } x < -2 \\ x^2 & \text{if } -2 \leq x < 2 \\ 6 - x & \text{if } x \geq 2 \end{cases} \) and check if it is continuous at \(a = -2 \) and differentiable at \(a = 2 \).

7. Find all the asymptotes for \(f(x) = \frac{x^2 - 5x}{x^2 - 4x - 5} \).

8. Find an equation of the tangent line to the graph of \(g(x) = \frac{x + 1}{|x - 1|} \) through the point \((2, g(2))\).

9. Use the graph of \(f(x) = \sqrt{x} \) to find a number \(\delta \) such that if \(|x - 4| < \delta\) then \(|\sqrt{x} - 2| < 0.1\).

10. Find the values of \(a \) and \(b \) that will make the function

\[
f(x) = \begin{cases} \frac{x^2 - 4}{x - 2} & \text{if } x < 2 \\ ax^2 - bx + 1 & \text{if } 2 \leq x < 3 \\ 4x - a + b & \text{if } x \geq 3 \end{cases}
\]

continuous everywhere.

11. Let \(f(x) = \sqrt{x + 1} \). Use the definition of the derivative to compute \(f'(x) \) and \(f''(0) \).

12. The following limits represent the derivative of some function \(f \) at some number \(a \). Determine \(f \) and \(a \):

\[
a) \lim_{h \to 0} \frac{\sqrt{9 + h} - 3}{h}, \quad b) \lim_{h \to 0} \frac{e^{-2 + h} - e^{-2}}{h}, \quad c) \lim_{\theta \to \pi/6} \frac{\sin \theta - 1/2}{\theta - \pi/6}.
\]

13. Show that \(g(x) = x|x| \) is differentiable everywhere and compute \(g'(-1) \). Graph the functions \(g \) and \(g' \).

14. Let \(f(x) = \begin{cases} x \cos \frac{1}{x} & x \neq 0 \\ 0 & x = 0 \end{cases} \). Is \(f \) continuous at \(a = 0 \)? Is \(f \) differentiable at \(a = 0 \)?

15. If \(2x - 1 \leq f(x) \leq x^2 \) for \(0 < x < 2 \), compute \(\lim_{x \to 1} f(x) \).

16. Since \(\lim_{x \to 1} \frac{1}{(x - 1)^2} = \infty \), given \(M = 10000 \) find \(\delta > 0 \) such that \(0 < |x - 1| < \delta \) implies \(\frac{1}{(x - 1)^2} > M \).