Generalized variance
Multivariate Normal Distribution

Goals: 1) Illustrate generalized variance properties;
2) Learn how to generate Multivariate Normal rvs;
3) Learn how to test for multivariate normality.

Assignments:
1. Generate a 1000x2 matrix N of iid standard Normal rvs; denote its columns by X and Y.
2. Create a 1000x3 matrix C with columns
 \begin{align*}
 C_1 &= X + Y \\
 C_2 &= X - Y \\
 C_3 &= 2X + 3Y
 \end{align*}
3. Find the generalized variance of C; discuss.
4. Find the linearly dependent columns in C using the spectral decomposition approach.

5. Generate 1000 multivariate Normal rvs with zero mean and variance-covariance matrix
 \[\Sigma = \begin{bmatrix} 12 & 4 \\ 4 & 5 \end{bmatrix}. \]
6. Find the linear combination that transforms your rv to a standard 2-D Normal rv.

7. Generate 500 multivariate Normal rvs X_i with zero mean and variance-covariance matrix
 \[\Sigma = \begin{bmatrix} 10 & 4 & 1 \\ 4 & 5 & 4 \\ 1 & 4 & 10 \end{bmatrix}. \]
8. Test multivariate Normality for the sample X_i using a χ^2 test based on statistical distances.
9. Test multivariate Normality for the sample $(X_i)_3$.

Reports: Printed reports are due on Tuesday, March 27, 2018.

Report preparation: Consider each report as a mini-paper. It should not be long, but it should provide a reader with all background information about the problem and methods you are using. Review the necessary theoretical material and describe the data. Do not insert the R-output in your report; instead, summarize it in tables or text in a nice readable form. If you still feel some parts of the R-output should be reported, put them in Appendix. Put your name on the title page.
1. **Generation of Multivariate Normal (MVN) rvs**
 1. Linear combination of iid standard Normal rvs
 2. \mathbb{G}-operator

2. **Generalized variance**
 1. Volume occupied by data points
 2. Linear dependence of data with zero generalized variance

3. **Properties of Multivariate Normal distribution**
 1. How to create a MVN rv with given variance matrix from iid standard Normal rvs
 2. How to create iid standard Normal rvs from a MVN rv with given variance matrix
 3. How to test for Multi-normality using the statistical distances

4. **How to write functions in \mathbb{R}**
Install libraries ...
#=================================
library(Matrix) # ... for matrix operations
library(car) # ... for ellipse plots
library(stats) # ... for statistical operations
library(MASS) # ... for Multivariate Normal Distribution
library(graphics) # ... for arrows

Multivariate Normal Sample ...
... as a linear combination of iid standard normal rvs
len <- 5
N <- matrix(rnorm(len*2), len, 2) # 5x2 iid N(0,1) rvs
A <- matrix(c(1,1,1,-1),2,2) # 2x2 matrix of coefficients
X <- N %*% A # 5x2 linear combination

Multivariate Normal Sample ...
... using an R operator
#=================================
Sigma <- matrix(c(10,4,4,2),2,2)
mvrnorm(n=1,c(0,0), Sigma) # sample 1x2 with mean [0,0]
mvrnorm(n=5,c(0,0), Sigma) # sample 5x2 with mean [0,0]
mvrnorm(n=5,c(-100,100),Sigma) # sample 5x2 with mean [-100,100]
var(mvrnorm(n=1000, rep(0, 2), Sigma)) # Sigma is the population variance
var(mvrnorm(n=1000, rep(0, 2), Sigma, empirical = TRUE)) # Sigma is the sample variance

Correlation and covariance matrices
#=======================================
cor(N) # correlation matrix
cor(X) # correlation matrix
cov(N) # variance-covariance matrix
cov(X) # variance-covariance matrix
var(N) # the same as cov(N)
var(X) # the same as cov(X)
Generalized variance I: Volume occupied by data
This example illustrates that generalized variance is related to the volume occupied by data scatter

\[
\text{len} < 1000 \\
N <- \text{matrix}(\text{rnorm}(\text{len}*2), \text{len}, 2) \quad \# 1000x2 \ iid \ N(0,1) \ rvs \\
A <- \text{matrix}(c(2,1,1,2), 2, 2) \quad \# 2x2 \ matrix \ of \ coefficients \\
X[,1] = X[,1] + 5 \quad \# shift \ first \ column \\
X[,2] = X[,2] + 5 \\
\text{det} (\text{cov}(N)) \quad \# \ \text{gen. \ var \ for} \ N \\
\text{det} (\text{cov}(X)) \quad \# \ \text{gen. \ var \ for} \ X \\
e1 <- \text{SA}(X) \quad \# \ \text{ellipses} \ for \ X \\
e2 <- \text{SA}(N, \text{add=}\text{T}) \quad \# \ \text{ellipses} \ for \ N
\]

Generalized variance II: Linearly dependent observations
This example shows how to find linearly dependent vectors in a data matrix with zero generalized variance

\[
\text{len} < 1000 \\
N <- \text{matrix}(\text{rnorm}(\text{len}*2), \text{len}, 2) \quad \# 100x2 \ iid \ N(0,1) \ rvs \\
A <- \text{matrix}(c(1,1,1,-1,2,3), 2, 3) \quad \# 2x3 \ matrix \ of \ coefficients \\
X <- N %*% A \quad \# 100x3 \ linear \ combination \\
\text{det} (\text{cov}(N)) \quad \# \ \text{gen. \ var \ for} \ N \\
\text{det} (\text{cov}(X)) \quad \# \ \text{gen. \ var \ for} \ X \\
\Sigma <- \text{cov}(X) \quad \# \ \text{covariance \ matrix} \\
e <- \text{eigen}(\Sigma) \quad \# \ \text{eigenvalues, \ eigenvectors} \\
\text{plot}(X %*% e$\text{vectors}[,1], \text{col='blue'}) \quad \# \ \text{lin. \ comb. \ for \ max. \ eigenvalue} \\
\text{points}(X %*% e$\text{vectors}[,3], \text{col='red'}) \quad \# \ \text{lin. \ comb. \ for} \ 0\text{-eigenvalue} \\
e$\text{vectors}[,3]/e$\text{vectors}[2,3] \quad \# \ "good" \ form \ of \ linear \ dependence
Multivariate Normal (MVN) Distribution
#
This example shows how to
a) create Normal rvs with given variance matrix from iid N(0,1)
b) create iid N(0,1) from Normal rvs with given covariance matrix
#
Sigma <- matrix(c(10,4,4,2),2,2) # variance matrix
I <- diag(c(1,1)) # identity matrix
N <- mvrnorm(n=10000,c(0,0),I) # MVN with variance I
X <- mvrnorm(n=10000,c(0,0),Sigma) # MVN with variance Sigma
#
e <- eigen(Sigma) # spectral decomposition
P <- e$eigenvectors # eigenvectors
L <- e$values # eigenvalues
#
Sm05 <- P%*%sqrt(diag(1/L))%*%t(P) # inverse square-root matrix
Sp05 <- P%*%sqrt(diag(L))%*%t(P) # square-root matrix
#
Z <- t(Sm05%*%t(X)) # vector of iid N(0,1) rvs
X1 <- t(Sp05%*%t(N)) # MVN rv with variance Sigma
var(Z)
var(X1)
Sigma
#
Chi-square distribution of statistical distances
#
This example shows how to test for multi-normality
using the chi-square distribution
#
Sigma <- matrix(c(10,4,4,2),2,2) # variance matrix
(A) True Multivariate Normal
len = 1000
X <- mvrnorm(n=len,c(0,0),Sigma) # 1000x2 MVN rv
S1 <- solve(cov(X)) # inverse of estimated covariance
d <- rep(0,len)
for (i in 1:len)
d[i] <- t(X[i,])%*%S1%*%X[i,] # distance from i-th point
qqplot(qchisq(seq(1,len)/len,2),d) # qqplot with chi-sq quantiles
segments(0,0,10,10,col='red',lwd=2)
grid()
ks.test(d,"pchisq",2) # formal KS test
(B) Not Multivariate Normal

len=1000
X<-mvnrnorm(n=len,c(0,0),Sigma) # 1000x2 MVN rv
X<-X^2

S1<-solve(cov(X)) # inverse of estimated covariance
d<-rep(0,len)
for (i in 1:len)
d[i]<-t(X[i,])%*%S1%*%X[i,] # distance from i-th point

qqplot(qchisq(seq(1,len)/len,2),d) # qqplot with chi-sq quantiles
segments(0,0,10,10,col='red',lwd=2)
grid()

ks.test(d,"pchisq",2) # formal KS test

#===
Function that illustrates spectral decomposition
and statistical distance ellipses
#===

SA <- function(X,add=FALSE,data.plot=TRUE)
{
Vector of means
n<-dim(X)[1]
one<-matrix(rep(1,n),ncol=1)
mu<-as.vector(t(X) %*% one / n)

Variance
Sigma<-var(X)

e<-eigen(Sigma)
par(bg='yellow')
ellipse(mu,Sigma,3,add=add,xlim=range(X),ylim=range(X))
ellipse(mu,Sigma,2,add=TRUE)
ellipse(mu,Sigma,1,add=TRUE)
if (data.plot)
points(X[1,],X[2,],pch=20,col=4)
 arrows(mu[1],mu[2],mu[1]+e$vectors[1,1]*sqrt(e$values[1]),mu[2]+e$vectors[2,1]*sqrt(e$values[1]),length=.1,col='green',lwd=2)
 arrows(mu[1],mu[2],mu[1]+e$vectors[1,2]*sqrt(e$values[2]),mu[2]+e$vectors[2,2]*sqrt(e$values[2]),length=.1,col='green',lwd=2)
}