Lecture 5
(Handouts)

Diamond Interchanges
At Grade Interchange Types

- Diamond Interchange (>70%)
- Partial Cloverleaf
- Single-point Urban Interchange (SPUI)
Diamond Interchange

- Tight Diamond (<400 ft)
- Compressed (400~800 ft)
- Conventional (>800 ft)
Partial Cloverleaf
Diamond Interchange

Standard Intersection

Diamond Interchange

Left Turns do not Interlock

Median Wide Enough to Require Two Sets of Signals

CROSS STREET
Signal Phases at a Diamond Interchange

\[A = \phi_1 + \phi_2 \]
\[B = \phi_5 + \phi_6 \]
Basic Three-Phase Operation

Traffic Progression Line

Distance

Time

A

\(\phi_1 \)

A

\(\phi_2 \)

\(\phi_4 \)

\(\phi_5 \)

\(\phi_6 \)

\(\phi_8 \)

\(TT_{1,2} \)

\(TT_{2,1} \)
Phase Split and Capacity
Basic Three Phase

\[\phi_1 + \phi_2 + \phi_4 = C \]

\[\phi_5 + \phi_6 + \phi_8 = C \]

\[g_4 = g_8 = \max \left[\frac{y_4}{y_1 + y_2 + y_4} \times (C - 3l), \frac{y_8}{y_5 + y_6 + y_8} \times (C - 3l) \right] \]

\[g_i = \begin{cases}
\frac{y_i}{y_1 + y_2} \times (C - g_4 - 3l), & \text{for } i = 1,2 \\
\frac{y_i}{y_5 + y_6} \times (C - g_8 - 3l), & \text{for } i = 5,6
\end{cases} \]
Example: Three Phase
Example: Three Phase

<table>
<thead>
<tr>
<th>Movement</th>
<th>Demand vph</th>
<th>Sat. Flow vph</th>
<th>Flow Ratio</th>
<th>Phase Time, sec</th>
<th>Capacity vph</th>
<th>v/c Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>600</td>
<td>1700</td>
<td>0.35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>300</td>
<td>3600</td>
<td>0.08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>440</td>
<td>5400</td>
<td>0.08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>125</td>
<td>800</td>
<td>0.16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>930</td>
<td>3600</td>
<td>0.26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>740</td>
<td>5400</td>
<td>0.14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1+2</td>
<td>950</td>
<td>3600</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5+6</td>
<td>575</td>
<td>3600</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Other Three Phase
Favor West Side
Other Three Phase
Favor East Side
TTI-4 Phase

\[\phi_4 = \phi'_4 + \Phi \]

\[\phi'_4 \]

\[\Phi (\phi_{12}) \]

\[\Phi (\phi_{16}) \]

\[\phi_8 = \phi'_8 + \Phi \]

\[\phi_2 \]

\[\phi_1 \]

\[\phi_5 \]

\[\phi_6 \]

\[\phi_8 \]

\[A = \phi_1 + \phi_2 \]

\[B = \phi_5 + \phi_6 \]
TTI-four-Phase Operation

\[\phi_8 = \phi'_8 + \Phi \]
\[\phi_4 = \phi'_4 + \Phi \]

Overlap = T.T. - 2
Phase Split and Capacity

Four Phase

\[\phi_2 + \phi_4 + \phi_6 + \phi_8 = C + \Phi + \Phi = C + 2\Phi \]

\[\phi_1 + \phi_5 = C - 2\Phi \]

\[\phi_1 + \phi_2 + \phi_4 + \phi_5 + \phi_6 + \phi_8 = 2C \]

\[\phi_1 + \phi_2 + \phi_4 = \phi_5 + \phi_6 + \phi_8 = C \]

\[g_i = \frac{y_i}{y_2 + y_4 + y_6 + y_8} \times (C + 2\Phi - 4l) = \frac{y_i}{Y} \times (C + 2\Phi - 4l), \quad \text{for } i = 2,4,6,8 \]

\[g_1 = C - \phi_2 - \phi_4 - l \]

\[g_5 = C - \phi_6 - \phi_8 - l \]
Example: Four Phase
Example: Four Phase

<table>
<thead>
<tr>
<th>Movement</th>
<th>Demand vph</th>
<th>Sat. Flow vph</th>
<th>Flow Ratio</th>
<th>Phase Time, sec</th>
<th>Capacity vph</th>
<th>v/c Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>600</td>
<td>1700</td>
<td>0.35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>300</td>
<td>3600</td>
<td>0.08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>440</td>
<td>5400</td>
<td>0.08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>125</td>
<td>800</td>
<td>0.16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>930</td>
<td>3600</td>
<td>0.26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>740</td>
<td>5400</td>
<td>0.14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1+2</td>
<td>950</td>
<td>3600</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5+6</td>
<td>575</td>
<td>3600</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>