Power Series and Taylor Series
Lecture 21. 08/06/2012

Power series. This is the series of the form \(\sum_{n=0}^{\infty} c_n x^n \), where \(c_n \) are some numbers, \(x \) is a variable. Assume the following limit exists:

\[
\lim_{n \to \infty} \left| \frac{c_n}{c_{n+1}} \right| = R.
\]

Apply the Ratio Test: \(a_n = c_n x^n \), so

\[
\lim_{n \to \infty} \left| \frac{a_{n+1} x^{n+1}}{a_n x^n} \right| = |x| \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \frac{|x|}{R}.
\]

So if \(|x| < R \), this series converges, and if \(|x| > R \), it diverges. The interval \((-R, R)\) is called the interval of convergence, and \(R \) is the radius of convergence. We cannot say anything about the points \(\pm R \): the series may converge or diverge.

Example. 1. \(\sum x^n / n! \): \(c_n = 1/n! \), so \(|c_n/c_{n+1}| = (1/n!)/(1/(n+1)!)) = (n+1)!/n! = n+1 \to \infty \), so \(R = \infty \), it converges for all real \(x \). If there are factorials in the denominator of \(c_n \), the interval of convergence is the whole real line. In fact, this series converges to \(e^x \).

2. \(\sum \frac{(-1)^n+1 x^n}{n} \): \(c_n = (-1)^n+1/n \), and \(|c_n/c_{n+1}| = (n+1)/n = 1+1/n \to 1 \), so \(R = 1 \). In fact, the sum is ln(1 + x). If \(c_n \) contains only powers of \(n \) in the numerator and/or denominator (possibly with alternating signs - it does not make a difference), then \(R = 1 \).

Taylor series. We have Taylor approximation for \(f(x) \), \(x \approx 0 \):

\[
f(x) \approx T_n(x) = f(0) + f'(0) x + \frac{f''(0)}{2} x^2 + \frac{f'''(0)}{6} x^3 + \ldots + \frac{f^{(n)}(0)}{n!} x^n = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^k.
\]

The larger \(n \) is, the better this approximation is, because the error bound usually becomes smaller and smaller and tends to zero as \(n \to \infty \). If we set \(n = \infty \), in most cases we will have exact equation:

\[
f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n.
\]

This is called Taylor series for \(f(x) \) centered at 0. We can make it centered at \(b \):

\[
f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(b)}{n!} (x-b)^n.
\]

Standard Taylor series. Let us calculate such series for the following four easiest functions: \(1/(1-x) \), \(e^x \), \(\sin x \), \(\cos x \).

1. \(f(x) = 1/(1-x) \). Actually, we already know this:

\[
\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n.
\]
2. \(f(x) = e^x \). Then all derivatives are also \(e^x \), and their values at zero are 1. So
\[
e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}.
\]

3. \(f(x) = \sin x \). Then
- \(f^{(0)}(0) = f(0) = \sin 0 = 0 \);
- \(f^{(1)}(0) = f'(0) = \cos 0 = 1 \);
- \(f^{(2)}(0) = f''(0) = -\sin 0 = 0 \);
- \(f^{(3)}(0) = f'''(0) = -\cos 0 = -1 \);
- \(f^{(4)}(0) = \sin 0 = 0 \);
- \(f^{(5)}(0) = \cos 0 = 1 \);
- \(f^{(6)}(0) = -\sin 0 = 0 \);
- \(f^{(7)}(0) = -\cos 0 = -1 \), etc.

Therefore, the Taylor series has the form
\[
x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \ldots.
\]

We can write it in closed form. Indeed,
\[
f^{(n)}(0) = \begin{cases} 0, & n = 2k; \\
(-1)^k, & n = 2k + 1;
\end{cases}
\]
so
\[
\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}.
\]

4. \(f(x) = \cos x \). Then similarly
\[
\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \ldots = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}.
\]

The first series (geometric series) has the interval of convergence \((-1, 1)\), and the three other series (for \(e^x \), \(\cos x \), \(\sin x \)) converge for all \(x \).