Problem 1. For a function $u(x, y)$, its Laplacian is defined by

$$\Delta u = u_{xx} + u_{yy}.$$

Calculate Δu for $u(x, y) = e^x \cos y$. Simplify as much as possible.

1. Failing to recognize that Δu, which is $e^x \cos y - e^x \cos y$, is equal to 0.
Problem 2. Find the moment of inertia about the origin for the lamina

\[D = \{ x^2 + y^2 \leq R^2, \ x \geq 0 \} \]

with \(\rho(x, y) = \rho = \text{const.} \)

1. \(D = \{ 0 \leq \theta \leq \pi, \ 0 \leq r \leq R \} \). In fact, \(D = \{ -\pi/2 \leq \theta \leq \pi/2, 0 \leq r \leq R \} \). The former would be true if we had \(y \geq 0 \), not \(x \geq 0 \).

2. Not remembering the formula for \(I_0 \). Calculating center of mass or simply mass instead.

3. Calculating \(I_x \) and \(I_y \) separately and letting \(I_0 = I_x + I_y \). This is correct, but too long. Calculating \(I_0 \) is easier.
Problem 3. The same question for
\[D = \{ -a \leq x \leq a, \ -a \leq y \leq a \}. \]

1. Calculating this for disc with radius \(R \). This is not a disc, this is a rectangle (a square, in fact).
2. Forgetting to multiply by \(\rho \).
3. Not remembering the formula for \(I_0 \). Calculating mass or center of mass instead.
Problem 4. Maximize xyz under the conditions $x + y + z = 1$, $x, y, z \geq 0$. Find x, y, z for which the maximum is achieved, and the value of this maximum. Do not forget the boundary!

1. Not considering the boundary:
 - $y = 0, 0 \leq x \leq 1$;
 - $x = 0, 0 \leq y \leq 1$;
 - $0 \leq x \leq 1, y = 1 - x$.
2. The line is $y = 1 - x$, not $y = x - 1$.
3. The system
 $f_x = x - x^2 - 2xy = 0, \quad f_y = y - y^2 - 2xy = 0$

 is solved in this way:

 $x(1 - x - 2y) = 0, \quad y(1 - y - 2x) = 0,$

 but we can cancel out x and y, since we want to find only the points that lie strictly inside the domain. If you decide just to solve the system, without selecting the points strictly inside D, then writing just $(0, 0)$ and $(1/3, 1/3)$ is not sufficient, because $(1, 0)$ and $(0, 1)$ are also solutions.

4. Doing the Second Derivative Test and concluding that $(1/3, 1/3)$ is a maximum point. The Second Derivative Test implies only that this is a local maximum, it is not necessarily the maximum on the whole domain.
Problem 5. Find all positive a such that the integral

$$\iint_D \frac{1}{\sqrt{x^2 + y^2}} dA$$

converges (i.e. its value is less than infinity), where

$$D = \{x^2 + y^2 \geq 1\}.$$

1. Writing $0 \leq r \leq 1$ instead of $1 \leq r \leq \infty$.
2. Saying that

$$\int_1^\infty \frac{dr}{r^{a-1}} = \log(r^{a-1})|_{r=\infty}^{r=1}.$$

In fact, for $a \neq 2$

$$\int_1^\infty \frac{dr}{r^{a-1}} = \frac{r^{2-a}}{2-a}|_{r=1}^{r=\infty}.$$

3. Saying: since

$$\int_1^\infty \frac{dr}{r^{a-1}} = \frac{1}{2-a},$$

then for $a = 2$ it is undefined. In fact, it is

$$\int_1^\infty \frac{dr}{r} = \log r|_{r=1}^{r=\infty} = \infty.$$

When $a = 2$, the integral also diverges.

4. After calculating

$$\int_1^\infty \frac{dr}{r^{a-1}} = \frac{1}{2-a},$$

you did not find: when does it actually converge, i.e. when its value is less than infinity?

$$\int_1^\infty \frac{dr}{r^{a-1}} = \frac{1}{2-a} \left(\lim_{r \to \infty} r^{2-a} - 1 \right).$$

If $2-a < 0$, this converges. If $2-a > 0$, this diverges. The case $a = 2$ is considered separately (see above).