Problem 1. [10 points] Suppose \(A = (1, 0, 0), \ B = (0, 1, 0), \) and \(C = (0, -2, 1). \) Find the angle \(A \) of the triangle \(ABC \) and its area. Round the angle up to the nearest degree.

The angle \(A \) (let us call it \(\theta \)) is the angle between the vectors \(\mathbf{a} = \overrightarrow{AB} = \langle -1, 1, 0 \rangle \) and \(\mathbf{b} = \overrightarrow{AC} = \langle -1, -2, 1 \rangle. \) So

\[
\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|} = \frac{(-1) \cdot (-1) + 1 \cdot (-2) + 0 \cdot 1}{\sqrt{(-1)^2 + 1^2 + 0^2} \sqrt{(-1)^2 + (-2)^2 + 1^2}} = \frac{-1}{\sqrt{2}\sqrt{6}} = -\frac{1}{2\sqrt{3}}.
\]

So the angle \(\theta \) is \(\arccos(-1/\sqrt{12}) \approx 107^\circ. \) The area \(S \) of this triangle is half the area of the parallelogram based on \(\mathbf{a} \) and \(\mathbf{b}, \) i.e.

\[
S = \frac{1}{2} |\mathbf{a} \times \mathbf{b}|.
\]

The cross product

\[
\mathbf{a} \times \mathbf{b} = \begin{vmatrix}
i & j & k \\
-1 & 1 & 0 \\
-1 & -2 & 1
\end{vmatrix} = \mathbf{i} + \mathbf{j} + 3\mathbf{k}.
\]

Thus,

\[
S = \frac{1}{2} \sqrt{1^2 + 1^2 + 3^2} = \frac{\sqrt{11}}{2}.
\]

Problem 2. [10 points] Find the plane passing through the line

\(x = 1 + t, \ y = 1 - t, \ z = 2t, \)

and the point \(P = (0, 4, 3). \)

Solution. We need to find a normal vector \(\mathbf{n} \) to this plane. It is orthogonal to this line, i.e. to its direction vector \(\mathbf{v}_1 = \langle 1, -1, 2 \rangle. \) Also, pick some point \(Q \) on this line, say \(Q = (1, 1, 0) \) (corresponding to \(t = 0 \)). Then \(\mathbf{n} \) is orthogonal to \(\mathbf{v}_2 := \overrightarrow{PQ} = \langle 1, -3, -3 \rangle. \) Therefore, we can take

\[
\mathbf{n} = \mathbf{v}_1 \times \mathbf{v}_2 = \begin{vmatrix}
i & j & k \\
1 & -1 & 2 \\
1 & -3 & -3
\end{vmatrix} = 9\mathbf{i} + 5\mathbf{j} - 2\mathbf{k} = \langle 9, 5, -2 \rangle.
\]

Thus, we have a normal vector to this plane and a point \(P = (0, 4, 3) \) on this plane, so we can write the equation of this plane:

\[
9(x - 0) + 5(y - 4) - 2(z - 3) = 0 \iff 9x + 5y - 2z = 14.
\]