Problem 1. [Gunnarsson, Sp07, 5] Let

\[z = f(x, y) = \sqrt{e^x / y}. \]

(a) Find the domain of \(f \).
(b) Calculate \(f_x, f_y \), and \(f_{xy} \).
(c) Sketch the level curves for \(z = 1 \) and \(z = 2 \).

Problem 2. [Pevtsova, Win07, 3] Consider the surface given by the equation

\[f(x, y) = x^2 y + y^3 + x. \]

(a) Find the tangent plane to the surface at the point \((-2, 1, 3)\).
(b) Find all second partial derivatives of \(f \).

Problem 3. [Arms, Aut06, 4] For the function

\[f(x, y) = x^2 \sin(\pi y): \]

(a) Compute \(f_x, f_y, \) and \(f_{xy} \).
(b) Find the equation of the tangent plane to the graph of \(f \) at the point where \((x, y) = (3, 1)\).
(c) Find the equations of the line through \((3, 1, f(3, 1))\) and perpendicular to the tangent plane in part (b).

Problem 4. [Perkins, Win09, 4] You wish to build a rectangular box with no top with volume 6 ft\(^3\). The material for the bottom is metal and costs $3.00 a square foot. The sides are wooden and cost $2.00 a square foot. Calculate the dimensions of the box with minimum cost. Use the Second Derivative test to verify that your answer is indeed a minimum.

Problem 5. [Milakis, Win09, 3] Find the tangent plane to the surface given by the graph of

\[f(x, y) = \sqrt{28 - 2x^2 - y^2} \]

at \((2, 2)\). Use the linear approximation to estimate \(f(1.95, 2.01) \)

Problem 6. [Milakis, Win09, 4] Find (if any) the absolute maximum and minimum values of

\[f(x, y) = 3xy^2 \]

in \(D = \{(x, y) : x \geq 0, y \geq 0, x^2 + y^2 \leq 9\} \).

Solutions

Problem 1.
(a) \(e^x / y \geq 0 \iff y > 0 \), since for all \(x \) \(e^x > 0 \); so the domain is \(\{(x, y) : y > 0\} \).
(b) Note that \(f = e^{x/2}y^{-1/2} \). Hence \(f_x = (e^{x/2})'y^{-1/2} = (1/2)e^{x/2}y^{-1/2} \),
\(f_y = e^{x/2}(y^{-1/2})' = e^{x/2}(-1/2)y^{-3/2} = -(1/2)e^{x/2}y^{-3/2} \),
\(f_{xy} = (1/2)e^{x/2}y^{-1/2}y = 1/2e^{x/2}(y^{-1/2})_y = (1/2)e^{x/2}(-1/2)y^{-3/2} = -(1/4)e^{x/2}y^{-3/2} \).
(c) \(z = 1 \iff y = e^x \), \(z = 2 \iff y = e^{x/4} \).

Problem 2.
(a) Let us find \(f_x(-2, 1), f_y(-2, 1) \). \(f_x = 2xy + 1 \), hence \(f_x(-2, 1) = -3 \). \(f_y = x^2 + 3y^2 \), hence \(f_y(-2, 1) = 7 \). Thus, the equation of this plane is
\[z - 3 = -3(x + 2) + 7(y - 1), \quad 3x - 7y + z + 10 = 0. \]
(b) \(f_{xx} = 2y, \ f_{xy} = f_{yx} = 2x, \ f_{yy} = 6y. \)

Problem 3.

(a) \(f_x = 2x \sin(\pi y), \ f_y = \pi x^2 \cos(\pi y), \ f_{xy} = 2\pi x \cos(\pi y). \)

(b) First, note that \(f(3,1) = 0. \) Let us find \(f_x(3,1), f_y(3,1). \) \(f_x(3,1) = 2 \cdot 3 \sin(\pi) = 0, \ f_y(3,1) = \pi 3^2 \cos(\pi) = -9\pi. \) Thus, the equation of this plane is

\[
z - 0 = -0(x - 3) + (-9\pi)(y - 1), \quad z + 9\pi y = 9\pi.
\]

(c) Any directional vector of this line is a normal vector to the tangent plane at the point \((x, y) = (3, 1).\) E.g. we can take \(<0, 9\pi, 1>\) (indeed, look at the equation of this plane). Since this line has the point \((3, 1, f(3,1)) = (3, 1, 0),\) the equation of the line is \(x = 0t + 3 = 3, \ y = 9\pi t + 1, \ z = t. \) (Of course, there may be equivalent equations, i.e. different answers that are still correct.)

Problem 4. Suppose the length is \(x \) ft, the width is \(y \) ft, the height is \(z \) ft. Then the volume is \(xyz \) ft\(^3\), hence \(xyz = 6. \) The area of the bottom is \(xyft^2, \) hence its cost is \(3xy \$. \) The total area of the sides is \(2xz + 2yz \) ft\(^2\) (since there are fours sides, two have area \(xz ft^2 \) and two have area \(yz ft^2 \)). Hence its cost is \(2(2xz + 2yz) \$. \) From now on, we will eliminate the dollar sign for the sake of brevity. The total cost is

\[
f := 3xy + 4xz + 4yz.
\]

But \(z = 6/(xy), \) hence \(f \) can be expressed as a function of two variables \(x, y: \)

\[
f(x, y) = 3xy + \frac{24}{x} + \frac{24}{y}.
\]

Let us find its critical points:

\[
f_x = 3y - \frac{24}{x^2} = 0, \quad f_y = 3x - \frac{24}{y^2} = 0.
\]

We need to solve this system of equations. After simple algebraic operations, we obtain:

\[
x^2y = 8, \quad xy^2 = 8.
\]

Divide the first equation by the second; obtain: \(x/y = 1, \ x = y. \) Hence \(x^3 = 8, \ x = 2, \ y = 2. \) You do not need to verify that this is indeed a maximal point, on the midterm, unless it is required explicitly (as in this case).

\[
f_{xx} = \frac{48}{y^3}, \quad f_{xy} = f_{yx} = 3, \quad f_{yy} = \frac{48}{x^3}.
\]

Plug in \(x = y = 2: \)

\[
f_{xx}(2,2) = \frac{48}{8} = 6, \quad f_{xy}(2,2) = f_{yx}(2,2) = 3, \quad f_{yy}(2,2) = \frac{48}{8} = 6.
\]

Now we apply the Second Derivative Test: since \(f_{xx}(2,2) > 0 \) and \(f_{xx}(2,2)f_{yy}(2,2) - f_{xy}(2,2)^2 = 6 \cdot 6 - 3^2 = 27 > 0, \) we see: \((2,2) \) is indeed a local minimum point. And \(z = 6/(xy) = 6/4 = 3/2. \)

The answer: The length and the width of the bottom are \(2 \) ft each, the height is \(1.5 = 3/2 \) ft.

Problem 5. \(f(2,2) = \sqrt{28 - 8 - 4} = \sqrt{16} = 4. \)

\[
f_x = \frac{(28 - 2x^2 - y^2)}{2\sqrt{28 - 2x^2 - y^2}} = \frac{-4x}{2\sqrt{28 - 2x^2 - y^2}} = \frac{-2x}{\sqrt{28 - 2x^2 - y^2}};
\]

\[
f_y = \frac{(28 - 2x^2 - y^2)}{2\sqrt{28 - 2x^2 - y^2}} = \frac{-2y}{2\sqrt{28 - 2x^2 - y^2}} = \frac{-y}{\sqrt{28 - 2x^2 - y^2}}.
\]
Plug in $x = y = 2$: $\sqrt{28 - 2x^2 - y^2} = 4$, hence

$$fx(2, 2) = \frac{-4}{4} = -1, \quad fy(2, 2) = \frac{-2}{4} = -\frac{1}{2}.$$

Thus, the tangent plane is

$$z - f(2, 2) = fx(2, 2)(x - 2) + fy(2, 2)(y - 2),$$

or, in other words

$$z - 4 = (-1)(x - 2) + \left(-\frac{1}{2}\right)(y - 2) = -x - \frac{y}{2} + 3, \quad z = -x - \frac{y}{2} + 7.$$

This equation can be considered as a linear approximation of the function f in the neighborhood of $(2, 2)$. For example, $f(1.95, 2.01) \approx -1.95 - 2.01/2 + 7 = -2 + 0.05 - 1 - 0.005 + 7 = 4 + 0.045 = 4.045$.

Problem 6. It is obvious that $f(x, y) \geq 0$ for any point $(x, y) \in D$. And $f = 0 \Leftrightarrow x = 0$ or $y = 0$. Hence $f_{\min} = 0$, attained at any point with $x = 0$ or $y = 0$ on the boundary.

It is much more difficult to find f_{\max}. First, let us find the critical points inside D:

$$fx = 3y^2 = 0, \quad fy = 6xy = 0;$$

but this implies $y = 0$, i.e. there is no critical point inside D (only on the boundary, and we cannot take them into account if we try to find the maximal value in D). Hence f does not attain its maximal value in D in the interior of D. It attains this maximal value in D on the boundary of D. But what is this value? The boundary consists of three pieces:

$$x = 0, \quad y \in [0, 3]; \quad x \in [0, 3], \quad y = 0; \quad x^2 + y^2 = 9, \quad x, y \geq 0 \Rightarrow x, y \leq 3.$$

On the first and second pieces we have $f = 0$. And on the third piece

$$f = 3x(9 - x^2) = 27x - 3x^3, \quad x \in [0, 3].$$

Let us find its maximal value on this interval (now we temporarily consider f as a function of one variable).

$$fx = 27 - 9x^2 = 0, \quad x^2 = 3, \quad x = \sqrt{3}.$$

And $f_{xx} = -18x < 0$ for $x = \sqrt{3}$. Hence the Second Derivative Test shows that $\sqrt{3}$ is a point of local maximum.

Since this is the only critical point, it is the point of global maximum on $[0, 3]$. Thus $(x, y) = (\sqrt{3}, \sqrt{6})$ (we find the corresponding value of y in this way: $y = \sqrt{9 - x^2} = \sqrt{9 - 3} = \sqrt{6}$) is a maximal point of f at the third piece of the boundary.

We conclude that this is the point of global maximum of f on D, since its values on the other two pieces of the boundary are $0 < f(\sqrt{3}, \sqrt{6}) = 18\sqrt{3}$. Thus $18\sqrt{3} = f_{\max}$. Summarizing these results, we have:

$$f_{\min} = 0, \text{ attained at any point } x = 0 \text{ or } y = 0.$$

$$f_{\max} = 18\sqrt{3}, \text{ attained at } (\sqrt{3}, \sqrt{6}).$$