Midterm one–Math 126 C/D, Winter 2011

Midterm one will be given on Wednesday, Jan. 26. It will cover Sections 10.1-10.3, 12.1-12.6 and 13.1-13.2.

Some basic rules

1. You may use a simple scientific calculator, but not graphing calculators.
2. You are allowed to have one page of hand-written notes of standard size.
3. Make sure to show all your work (except for True/False questions). You will not receive any partial credit unless all work is clearly shown.
4. Unless otherwise stated, always give your answers in exact form. For example, 3π, $\sqrt{2}$, $\ln 2$ are in exact form, the corresponding approximations 9.424778, 1.4142, 0.693147 are not in exact form.
5. There are five questions in the exam. Each question contains several parts.

Practice problems

Problem 1: True-False questions. Problems are similar to those in “Concept Check” and “True-False Quiz” on p. 669, pp. 812-813, and pp. 849-850.

Example: Determine if the following are True or False.

(a) For any vectors \vec{u} and \vec{v} in the 3-dimensional space, $\vec{u} \bullet \vec{v}$ is a vector in the 3-dimensional space.

(b) For any vector \vec{u} and \vec{v} in the 3-dimensional space, $\vec{u} \times \vec{v}$ is a vector in the 3-dimensional space.

(c) The cross product of two unit vectors is a unit vector.

(d) The line $\vec{r}(t) = (3-4t, 5-6t, -2+t)$ is parallel to the plane $-4x - 6y + z - 10 = 0$.

Problem 2: (Sections 10.1-10.3) Parametric curves in \mathbb{R}^2, tangent, area, arclength, polar curves, tangents to polar curves. Practice problems: p. 627, #24, 28, p. 648, #54, 55, 56 and p. 670, #3, 23, 25, 29, 33, 37, p672, #5.

Example: (a) The curve C is defined by the parametric equations $x = 3t - t^3, y = 3t^2$ for $0 \leq t \leq 1$. Find the area between the curve C and x-axis

(b) The curve C is defined by the polar equation $r = \theta$ for $0 \leq \theta \leq \pi/2$. Find the arclength of C.

(c) Find the equation of the tangent line to the parametric curve $x = \sin^3 \theta, y = \cos^3 \theta$ at the point where $\theta = \pi/4$.

1
Problem 3: (Sections 12.1-12.4) Vector, length, angle, dot product, cross product, scalar projection, vector projection, triple product, direction angles, angle formulas, area and volume formulas. Practice problems: p785, #23, 25, 37, 39, p. 793, #31, 33, 37, p813, #3,5,7

Example: Let $\vec{u} = \langle 4, 3, 0 \rangle$ and $\vec{v} = \langle 5, 5, 5 \rangle$ and $\vec{w} = \langle 2, 3, c \rangle$. (i) Find a unit vector parallel to \vec{u}. (ii) Find the vector projection from \vec{v} to \vec{u}. (iii) Find a vector orthogonal to both \vec{u} and \vec{v}. (iv) Find the angle between \vec{u} and \vec{v}. (v) Find the volume of the parallelepiped determined by the vectors $\vec{u}, \vec{v}, \vec{w}$. (vi) Find c such that vectors $\vec{u}, \vec{v}, \vec{w}$ are coplanar. (vii) Find c such that $\vec{u} \times \vec{v}$ is orthogonal to \vec{w}.

Example: (a) Consider the plane $x + y + z = 3$ and the line L_1: $\vec{r}(t) = \langle t - 1, 2t, -t + 1 \rangle$. (i) Determine whether the plane and the line intersect or parallel. (ii) If intersect, find the point of intersection. If parallel, find the distance between them. (iii) Find a line L_2 on the plane such that L_1 and L_2 are intersect and orthogonal.

Example: A surface consists of all points P such that the distance from P to $(1,0,-1)$ is twice the distance from P to the plane $y = 1$. Find an equation for this surface and identify it.

Example: If $\vec{r}(t)$ is the position vector, then the velocity vector is defined to be $\vec{V}(t) := \vec{r}'(t)$ and acceleration vector is defined to be $\vec{a}(t) := \vec{r}''(t)$. Suppose acceleration vector is $\vec{a}(t) = \langle 3 \sin t, 3 \cos t, 0 \rangle$. (i) Find the velocity vector with an initial velocity $\vec{V}(0) = \langle -1, 0, 0 \rangle$. (ii) Find the position vector with an initial position $\vec{r}(0) = \langle 1, 1, 1 \rangle$.

Please also review double angle formula for $\sin x$ and $\cos x$.

2