Problem 1. [Midterm 1, Békayl, Spring 2009, 2] Find the angle of intersection of the two curves
\(\mathbf{r}_1(t) = <t^3, 2t^2 + 1, 2t + 3> \) and \(\mathbf{r}_2(s) = <s - 4, s - 3, s - 1> \).

Problem 2. [Midterm 1, Milakis, Winter 2009, 6] Find the exact coordinates of the lowest point on
the curve in \(\mathbb{R}^2 \) given by the parametric equations \(x = 2\cos(t) + \sin(t), \ y = \sin(t) - \cos(t) \).

Problem 3. [Midterm 1, Békayl, Autumn 2007, 1] For the questions below use the points \(P(2, 1, 5), Q(1, 3, 4) \) and \(R(3, 0, 6) \).
(a) Find a vector orthogonal (perpendicular) to the plane through the points \(P, Q \) and \(R \).
(b) Find the area of the triangle \(PQR \).
(c) Determine if the point \(T(0, 3, 3) \) is on the same plane as \(P, Q \) and \(R \).

Problem 4. [Midterm 1, Békayl, Spring 2008, 3] Sketch the graph of the curve
\(x = e^t \cos t, \ y = e^t \sin t, \ 0 \leq t \leq 2\pi \)
marking the \(x \) and \(y \) intercepts and find its length.

Problem 5. [Midterm 1, Pevtsova, Autumn 2006, 4] Let \(A = (3, 0, 0), B = (0, 4, 0), \) and \(C = (0, 0, 1) \).
(a) Find the area of the triangle \(ABC \).
Hint. The following identity may be useful: \(3^2 + 4^2 + 12^2 = 13^2 \).
(b) Let \(CH \) be the height of the triangle from the vertex \(C \) to the base \(AB \). Find the coordinates of
the point \(H \).
Problem 1. First, let us find the point of intersection of these curves. We must solve the system of equations

\[t^3 = s - 4, \quad 2t^2 + 1 = s - 3, \quad 2t + 3 = s - 1. \]

Subtract the third equation from the second and obtain \(2t^2 - 2t - 2 = -2, 2t^2 - 2t = 0, 2t(t-1) = 0,\) so \(t = 0\) or \(t = 1.\) Plug in \(t = 0: 0 = s - 4, 1 = s - 3, 3 = s - 1,\) so \(s = 4.\) Plug in \(t = 1: 1 = s - 4, 3 = s - 3, 5 = s - 1,\) so \(s = 5\) and \(s = 6\) - this is impossible, so the case \(t = 1\) does not give us any solution. Thus, the only point of intersection is at \(t = 0, s = 4.\) (This is \(x = 0, y = 1, z = 3.\)

Since \(r_1'(t) = -<3t^2, 4t, 2>,\) the tangent vector to the first curve at this point of intersection is \(a = r_1'(0) = <-0, 0, 2>\). Since \(r_2'(s) = <-1, 1, 1>,\) the tangent vector to the second curve at this point of intersection is \(b = r_2'(4) = <-1, 1, 1>\). The angle between the curves is the angle between \(a\) and \(b.\) If \(\theta\) is this angle, then

\[\cos \theta = \frac{a \cdot b}{|a||b|}. \]

But \(a \cdot b = 2, |a| = 2, b = \sqrt{3},\) so \(\cos \theta = 1/\sqrt{3},\) and \(\theta = \arccos(1/\sqrt{3}).\)

Problem 2. The lowest point is the point with the minimal \(y.\) Let us find the minimum point of \(y(t) = \sin t - \cos t.\) We can do this without calculus. Indeed,

\[y(t) = \sqrt{2} \left(\frac{1}{\sqrt{2}} \sin t - \frac{1}{\sqrt{2}} \cos t \right) = \sqrt{2} \left(\cos \frac{\pi}{4} \sin t - \sin \frac{\pi}{4} \cos t \right) = \sqrt{2} \sin \left(t - \frac{\pi}{4} \right). \]

This function attains its (global) minimum when \(t - \pi/4 = -\pi/2, t = -\pi/4.\) Thus, the lowest point is

\[x(-\pi/4) = 2 \cos(-\pi/4) + \sin(-\pi/4) = 2 \cos(\pi/4) - \sin(\pi/4) = \sqrt{2}/2, \]

\[y(-\pi/4) = \sin(-\pi/4) - \cos(-\pi/4) = -\sqrt{2}/2 - \sqrt{2}/2 = -\sqrt{2}. \]

Problem 3. (a) The vectors \(a = PQ = <-1, 2, -1>\) and \(b = PR = <-1, -1, 1>\) lie on this plane. Therefore, the following vector is normal: \(n = a \times b = <1, 0, -1>\).

(b) The area of the triangle \(PQR\) is half of the area of the parallelogramm based on the vectors \(a, b.\) The area of this parallelogramm is \(|a \times b| = \sqrt{2}.\) Thus, the area of this triangle is \(\sqrt{2}/2.\)

(c) This plane passes through the point \((2, 1, 5)\) and has a normal vector \(<1, 0, -1>\) Therefore, its equation is

\[1 \cdot (x - 2) + 0 \cdot (y - 1) + (-1) \cdot (z - 5) = 0, \quad x - z + 3 = 0. \]

And this point \(T(0, 3, 3)\) satisfies this equation; therefore, it lies on the plane which passes through \(P, Q\) and \(R.\)

Problem 4. Let us find the length of this curve.

\[x'(t) = e^t (\cos t - \sin t), \quad y'(t) = e^t (\sin t + \cos t). \]

Therefore,

\[x'(t)^2 + y'(t)^2 = e^{2t} ((\cos t - \sin t)^2 + (\sin t + \cos t)^2) = e^{2t} (\cos^2 t - 2 \cos t \sin t + \sin^2 t + \sin^2 t + \sin^2 t + 2 \cos t \sin t + \cos^2 t) = e^{2t} (2 \cos^2 t + 2 \sin^2 t) = 2e^{2t}. \]

And \(\sqrt{x'(t)^2 + y'(t)^2} = \sqrt{2e^t},\) so the length of this curve is

\[\int_0^{2\pi} \sqrt{x'(t)^2 + y'(t)^2} dt = \int_0^{2\pi} \sqrt{2} e^t dt = \sqrt{2} (e^{2\pi} - 1). \]
Problem 5. (a) \(\mathbf{a} = \mathbf{AB} = \langle -3, 4, 0 \rangle, \mathbf{b} = \mathbf{AC} = \langle -3, 0, 1 \rangle. \) The area of this triangle (similarly to Problem 3(b)) is

\[
\frac{1}{2} |\mathbf{a} \times \mathbf{b}| = \frac{1}{2} |\langle 4, 3, 12 \rangle| = \frac{1}{2} \sqrt{4^2 + 3^2 + 12^2} = \frac{13}{2},
\]

because \(\mathbf{n} = \mathbf{a} \times \mathbf{b} = \langle 4, 3, 12 \rangle. \)

(b) Let us find the equations of the lines \(\mathbf{CH} \) and \(\mathbf{AB}. \) The directional vector of the line \(\mathbf{AB} \) is \(\mathbf{AB} = \langle -3, 4, 0 \rangle. \) This line passes through the point \(\mathbf{A} = (3, 0, 0). \) Therefore, its parametric equation is

\[
x = 3 - 3t, \quad y = 4t, \quad z = 0.
\]

The line \(\mathbf{CH} \) lies on the plane that passes through the points \(\mathbf{A}, \mathbf{B}, \mathbf{C} \) and therefore is orthogonal to the normal vector \(\mathbf{n} = \langle 4, 3, 12 \rangle. \) This line is also orthogonal to the vector \(\mathbf{AB} = \langle -3, 4, 0 \rangle. \) Therefore, its directional vector is

\[
\mathbf{n} \times \mathbf{AB} = \langle -48, -36, 25 \rangle.
\]

This line passes through the point \(\mathbf{C} = (0, 0, 1); \) therefore, its equation is

\[
x = -48s, \quad y = -36s, \quad z = 25s + 1.
\]

The point \(\mathbf{H} \) is the point of intersection of these lines; to find it, we need to solve the system

\[
-48s = 3 - 3t, \quad -36s = 4t, \quad 25s + 1 = 0.
\]

\(s = -1/25 \) from the third equation, so \(x = 48/25, y = 36/25, z = 0 \) are the coordinates of \(\mathbf{H}. \)