Problem 1. [Final Exam, Spring 2007, 5] What is the maximal curvature of the curve \(y = \ln \cos x \)?

Problem 2. [Midterm 2, Milakis, Spring 2009, 4] A curve is given by the equation \(r = 2(1 - \cos \theta) \) in polar coordinates.
(a) Sketch the curve.
(b) Find all the points on the curve where the tangent line is horizontal.

Problem 3. [Midterm 2, Bekyel, Autumn 2007, 3] Consider the curve
\[\mathbf{r}(t) = \langle t^2, \cos(t^3), \sin(t^3) \rangle. \]
(a) Find the length of the curve from \(t = 0 \) to \(t = 2\pi \).
(b) Reparametrize the curve with respect to arc length measured from the point \(t = 0 \).

Problem 4. [Midterm 2, Pevtsova, Winter 2007, 1] Consider the curve given by the equation in polar coordinates
\[r = 4 \cos \theta + \sin \theta. \]
(a) Find the Cartesian equation of the curve. Sketch the curve.
(b) Find the equation of the tangent line to the curve at the point \(\theta = \pi/4 \).

Problem 5. [Midterm 2, Milakis, Winter 2009, 2] Reparametrize the curve
\[\left\langle \frac{2}{t^2 + 1} - 1, \frac{2t}{t^2 + 1}, 1 \right\rangle \]
with respect to arc length measured from point \((1, 0, 1)\) in the direction of increasing \(t \). Express the reparametrization in its simplest form.
Solutions

Problem 1. The curve is given by the equation
\[\mathbf{r}(t) = < t, \ln \cos t, 0 >. \]
Therefore,
\[\mathbf{r}'(t) = < 1, -\frac{\sin t}{\cos t}, 0 >, \]
\[\mathbf{r}''(t) = < 0, -\frac{1}{\cos^2 t}, 0 >. \]
Then we get
\[\mathbf{r}'(t) \times \mathbf{r}''(t) = < 0, 0, -\frac{1}{\cos^2 t} >, \quad | \mathbf{r}'(t) \times \mathbf{r}''(t) | = \frac{1}{\cos^2 t}. \]
Also, \(|\mathbf{r}'(t)| = \sqrt{1 + \tan^2 t} = \sqrt{1/\cos^2 t} = 1/| \cos t | \), and the curvature is
\[k(t) = \frac{|\mathbf{r}'(t) \times \mathbf{r}''(t)|}{|\mathbf{r}'(t)|^3} = \frac{1/\cos^2 t}{1/| \cos t |^3} = \frac{1/| \cos t |^2}{1/| \cos t |^3} = | \cos t |. \]
The maximum value of this function is 1.

Problem 2. (b) The parametric equations of this curve in Cartesian coordinates are
\[x = r \cos \theta = 2 \cos \theta (1 - \cos \theta) = 2 \cos \theta - 2 \cos^2 \theta, \]
\[y = r \sin \theta = 2 \sin \theta (1 - \cos \theta) = 2 \sin \theta - 2 \sin \theta \cos \theta. \]
The directional vector of the tangent line at point \(\theta \) is
\[< x'(\theta), y'(\theta) > = < -2 \sin \theta + 4 \cos \theta \sin \theta, 2 \cos \theta - 2 \cos^2 \theta + 2 \sin^2 \theta >. \]
This line is horizontal if and only if the \(y \)-component of this directional vector is 0, i.e.
\[2 \cos \theta - 2 \cos^2 \theta + 2 \sin^2 \theta = 0. \]
Let us solve this equation. Denote \(u := \cos \theta \) and observe that \(\sin^2 \theta = 1 - u^2 \). So
\[u - u^2 + (1 - u^2) = 0, \quad 2u^2 - u - 1 = 0, \quad 2(u-1)(u + \frac{1}{2}) = 0, \]
and either \(u = \cos \theta = 1 \) or \(u = \cos \theta = -1/2 \). In the first case, \(\theta = 0 \) and \(x = 0, \ y = 0 \). But in fact, this case is invalid, because \(x'(0) = y'(0) = 0 \), and this means that the tangent line simply does not exist! In the second case, \(\theta = \pm 2\pi/3 \) and \(x = 2u - 2u^2 = -3/2, \ y = \pm (\sqrt{3} + \sqrt{3}/2) = \pm 3\sqrt{3}/2. \) So there are two such points: \((-3/2, 3\sqrt{3}/2), (-3/2, -3\sqrt{3}/2)\).

Problem 3. (a) \(\mathbf{r}'(t) = < 2t, -3t^2 \sin t^3, 3t^2 \cos t^3 >. \) So
\[|\mathbf{r}'(t)| = \sqrt{4t^2 + (3t^2)^2 \cos^2 t^3 + (3t^2)^2 \sin^2 t^3} = \sqrt{4t^2 + 9t^4} = t \sqrt{4 + 9t^2}. \]
The length from 0 to \(t \) is
\[s(t) = \int_0^t |\mathbf{r}'(u)|du = \int_0^t u \sqrt{4 + 9u^2}du = \frac{4 + 9t^2}{18} \int_0^4 \sqrt{v} \]
(we changed variables \(v = 4 + 9u^2, \ dv = 18udu \)). Therefore,
\[s(t) = \frac{1}{18} \left[\frac{v^{3/2}}{3/2} \right]_4^{4 + 9t^2} = \frac{1}{27} \left((4 + 9t^2)^{3/2} - 4^{3/2} \right) = \frac{1}{27} \left((4 + 9t^2)^{3/2} - 8 \right). \]
In particular, \[s(2\pi) = \frac{1}{27} \left((4 + 36\pi^2)^{3/2} - 8 \right). \]

(b) We have: \(27s + 8 = (4 + 9t^2)^{3/2}, (27s + 8)^{2/3} - 4 = 9t^2, \) so \(t = \frac{1}{3}((27s + 8)^{2/3} - 4)^{1/2}.\) Thus, \[\mathbf{r}(t) = < \frac{1}{9}((27s + 8)^{2/3} - 4), \cos \frac{1}{27}((27s + 8)^{2/3} - 4)^{3/2}, \sin \frac{1}{27}((27s + 8)^{2/3} - 4)^{3/2}>. \]

Problem 4. (a) \(x = r \cos \theta = 4 \cos^2 \theta + \cos \theta \sin \theta, y = r \sin \theta = 4 \cos \theta \sin \theta + \sin^2 \theta.\) So \(x = 2(\cos 2\theta + 1) + \frac{1}{2} \sin 2\theta, \ y = 2 \sin 2\theta + \frac{1 - \cos 2\theta}{2}.\)

And we have:
\[x - 2 = 2 \cos 2\theta + \frac{1}{2} \sin 2\theta, \ y - \frac{1}{2} = 2 \sin 2\theta - \frac{1}{2} \cos 2\theta, \]
\[(x - 2)^2 + (y - \frac{1}{2})^2 = (2 \cos 2\theta + \frac{1}{2} \sin 2\theta)^2 + (2 \sin 2\theta - \frac{1}{2} \cos 2\theta)^2 = \frac{17}{4} \]
(just expand it out and use the trig identity \(\sin^2 \theta + \cos^2 \theta = 1).\)

(b) The coordinates of the point on the curve where \(\theta = \pi/4\) are \(x = 5/2, y = 5/2\) (after plugging in \(\theta = \pi/4\)). Since \(x'(\theta) = -8 \cos \theta \sin \theta + \cos^2 \theta - \sin^2 \theta, \ y'(\theta) = 4(\cos^2 \theta - \sin^2 \theta) + 2 \sin \theta \cos \theta,\) the tangent vector at this point is \(< x'(\pi/4), y'(\pi/4) >= < -4, 1 >.\) This vector is a directional vector for the tangent line; and this line passes through the point \((5/2, 5/2).\) Therefore, \(x = -4t + 5/2, y = t + 5/2\) is the parametric equation of this tangent line.

Problem 5.
\[\mathbf{r}'(t) = < -\frac{4t}{(1 + t^2)^2}, \frac{2(t^2 + 1) - 2t \cdot 2t}{(t^2 + 1)^2}, 0 >= < -\frac{4t}{(t^2 + 1)^2}, \frac{2(1 - t^2)}{(t^2 + 1)^2}, 0 >. \]

\[|\mathbf{r}'(t)| = \sqrt{\left(-\frac{4t}{(t^2 + 1)^2} \right)^2 + \left(\frac{2(t^2 - 1)}{(t^2 + 1)^2} \right)^2 + 0^2} = \sqrt{\frac{16t^2 + 4(t^2 - 1)^2}{(1 + t^2)^4}} = \sqrt{\frac{4(t^2 + 1)^2}{(t^2 + 1)^4}} = \frac{2}{t^2 + 1}. \]

The point \((1,0,1)\) corresponds to \(t = 0.\) Indeed, compare the second components: \(2t/(t^2 + 1) = 0\) if and only if \(t = 0.\) The arclength from \(t = 0\) to \(t\) is
\[s(t) = \int_{0}^{t} |\mathbf{r}'(u)|du = \int_{0}^{t} \frac{2}{u^2 + 1}du = 2 \arctan t. \]

So \(t = \tan(s(t)/2).\) And
\[\mathbf{r}(t) = < \frac{2}{\tan^2(s/2) + 1} - 1, \frac{2 \tan(s/2)}{\tan^2(s/2) + 1}, 1 >= < 2 \cos^2 \frac{s}{2} - 1, 2 \sin \frac{s}{2} \cos \frac{s}{2}, 1 >= < \cos s, \sin s, 1 >. \]