In Problems 1-3, find the general solution of the equation.

Problem 1. $y'' - y = e^{2t}$.

Problem 2. $y'' - y = te^{2t} + 2e^{t} + t$.

Problem 3. $y'' + 2y' + 8y = -e^{t}$.

In Problems 4-9, write the general solution of the equation with undetermined coefficients (but do not find the coefficients). Indicate which coefficients are undetermined but fixed (such as A, B), and which are general constants which are to be determined for the initial value problem (C_1, C_2).

Example: $y'' - y = 2te^{t} \Rightarrow y = C_1e^{t} + C_2e^{-t} + (At^2 + Bt)e^{t}$.

Problem 4. $y'' - y' - 6y = t^2e^{-t}$.

Problem 5. $y'' - 4y = -0.5t^3e^{3t} + 1$.

Problem 6. $y'' - 4y' + 3y = -4t^2e^{t} + e^{3t}$.

Problem 7. $y'' + 4y = -3(t^5 - 4t)e^{-t}$.

Problem 8. $y'' - 6y' + 9y = -(t^2 + t)e^{3t} - 4t^3 + t^2e^{t}$.

Problem 9. $y'' + 3y' + 2y = -2t^2 + 3 + (t^3 - 4t)e^{-t}$.

**Problem 10*. According to one model of air resistance, the resistance force is proportional to the square of the speed: $F = kv^2$. Suppose we drop a ball with mass m with zero initial speed from initial height 0. The gravitational force is $F = mg$.

(i) Find $v(t)$, the speed at time t.

(ii) Draw a diagram of stable/unstable/semistable solutions. Find the limiting speed as $t \to \infty$.

The problems marked with an asterisk are optional, non-mandatory, for extra credit. Also, if you are going to apply to a graduate or professional school, and if you solve them, then I will mention this in your recommendation letter, which will make this recommendation stronger.