Problem 1. Determine the steady-state solution for mechanical vibrations with
\[m = 1, \ k = 2, \ \gamma = 1, \ F_0(t) = 3 \cos t. \]

Problem 2. For a mechanical system with no damping, \(k = 2, \ m = 8, \) and the external force \(F_0(t) = -2 \sin(\omega t), \) find the value of \(\omega \) which causes the resonance. Find \(u(t) \) for this \(\omega, \) if the initial position \(u(0) = 1, \) and the initial speed is zero.

Problem 3. Let \(m = 1, \ k = 4. \) For which \(\gamma \) is there an overdamping? underdamping?

Problem 4. Consider a mechanical system without external force, with parameters
\[m = 1, \ k = 2, \ \gamma = 1, \ u(0) = 1, \ u'(0) = -1. \]
Find the amplitude (dependent on \(t \)), and initial phase.

Problem 5. A circuit has a capacitor of 1, a resistor of 3, and an inductor of 2. The initial charge of the capacitor is \(-2 \) and there is no initial current. The battery gives \(E(t) = 3 \cos(2t). \) Find the charge \(Q \) on the capacitor at any time \(t. \) What is the steady-state solution?

Problem 6. A circuit has a capacitor \(C, \) an inductor \(L, \) and no resistor. The parameters \(C \) and \(L \) are given. The battery gives you \(E(t) = E_0 \cos(\omega t). \) Find \(\omega \) such that there is a resonance.

Problem 7. A circuit has \(R = 1, \ L = 1, \) and no capacitor. The battery gives the constant voltage: \(E(t) = 2. \) Suppose initially there were no charge and no current in the system. Find the current at time \(t. \) What is the limit of the current as \(t \to \infty? \)

Problem 8. A circuit has \(C = 2, \ L = 4, \) and no resistor. There is no battery. The initial charge of the capacitor is \(-1/2, \) and the initial current is \(-1. \) Find the amplitude, the phase and the initial phase.

Problem 9. Find the general solution of the equation
\[y' = y^{5/2} t. \]
Find the solution to the following initial value problems: \(y(0) = 0; \ y(0) = 1; \ y(1) = 1. \)

Problem 10. Find the general solution of the equation
\[y' = -t^2 y + 2t^5. \]

Problem 11. Analyze asymptotically the equation
\[y' = y^3(y^2 - 1). \]