Problem 1. Determine the steady-state solution for mechanical vibrations with
\[m = 1, \ k = 2, \ \gamma = 1, \ F_0(t) = 3 \cos t. \]

Solution. We have:
\[mu'' + \gamma u' + ku = 3 \cos t \Rightarrow u'' + u' + 2u = 3 \cos t. \]
Let us find a particular solution of the nonhomogeneous equation in the form
\[u_1 = A \cos t + B \sin t. \]
This will be the steady-state solution. After plugging in the equation, we get:
\[A = \frac{3}{2}, \ B = \frac{3}{2}. \]

Problem 2. For a mechanical system with no damping, \(k = 2, \ m = 8, \) and the external force
\(F_0(t) = -2 \sin(\omega t), \) find the value of \(\omega \) which causes the resonance. Find \(u(t) \) for this \(\omega, \) if the initial position \(u(0) = 1, \) and the initial speed is zero.

Solution. \(8u'' + 2u = -2 \sin(\omega t). \) The homogeneous equation \(8u'' + 2u = 0 \) has characteristic equation \(8\lambda^2 + 2 = 0 \Rightarrow \lambda = \pm (1/2)i. \) So the general solution of the homogeneous equation is
\[u = C_1 \cos(t/2) + C_2 \sin(t/2), \]
and the internal frequency (frequency in absence of external forces, which corresponds to zero right-hand side) is equal to \(1/2. \) The external frequency is \(\omega, \) so the resonance happens when \(\omega = 1/2. \) For this \(\omega, \) we should find a particular solution to the nonhomogeneous equation in the form
\[u = At \cos(t/2) + Bt \sin(t/2). \]
After calculation, we get: \(A = 1/4, \ B = 0. \) So the general solution to the nonhomogeneous equation is
\[u = \frac{1}{4}t \cos(t/2) + C_1 \cos(t/2) + C_2 \sin(t/2). \]
From the initial conditions \(u(0) = 1 \) and \(u'(0) = 0, \) we find \(C_1 \) and \(C_2: \ C_1 = 1, \) and \(C_2 = -1/2. \)

Problem 3. Let \(m = 1, \ k = 4. \) For which \(\gamma \) is there an overdamping? underdamping?

Solution. \(\gamma > 2\sqrt{km} = 4: \) overdamping. \(\gamma < 4: \) underdamping.

Problem 4. Consider a mechanical system without external force, with parameters
\[m = 1, \ k = 2, \ \gamma = 1, \ u(0) = 1, \ u'(0) = -1. \]
Find the amplitude (dependent on \(t), \) and initial phase.
Solution. $u'' + u' + 2u = 0$ has characteristic equation
$$\lambda^2 + \lambda + 2 = 0 \Rightarrow \lambda = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 1 \cdot 2}}{2} = \frac{-1 \pm \sqrt{7}}{2}.$$ The general solution is
$$u = C_1 e^{-t/2} \cos\left(\frac{\sqrt{7}}{2} t\right) + C_2 e^{-t/2} \sin\left(\frac{\sqrt{7}}{2} t\right).$$ From the initial conditions, we get C_1, C_2: $C_1 = u(0) = 1$, and $C_2 = -1/\sqrt{7}$. Consider coefficients $K_1(t) = C_1 e^{-t/2} = e^{-t/2}$, $K_2(t) = C_2 e^{-t/2} = -\frac{1}{\sqrt{7}} e^{-t/2}$.

The amplitude is
$$A(t) = \sqrt{K_1^2(t) + K_2^2(t)} = \sqrt{1 + 1/7} e^{-t/2} = \sqrt{8/7} e^{-t/2}.$$ The initial phase is φ such that
$$\cos \varphi = K_2(0)/A(0) = \frac{-1/\sqrt{7}}{\sqrt{8/7}} = -\frac{1}{2\sqrt{2}}, \quad \sin \varphi = K_1(0)/A(0) = \frac{1}{\sqrt{8/7}} = \sqrt{7}/8.$$ This angle is $\pi - \sin^{-1}(\sqrt{7}/8)$, because it lies in the second quadrant.

Problem 5. A circuit has a capacitor of 1, a resistor of 3, and an inductor of 2. The initial charge of the capacitor is -2 and there is no initial current. The battery gives $E(t) = 3 \cos(2t)$. Find the charge Q on the capacitor at any time t. What is the steady-state solution?

Solution. $C = 1, R = 3, L = 2, Q(0) = -2, Q'(0) = I(0) = 0$. So
$$2Q'' + 3Q' + Q = 3 \cos(2t).$$ Homogeneous equation:
$$2\lambda^2 + 3\lambda + 1 = 0, \quad \lambda = -1, -\frac{1}{2}.$$ The general solution to the homogeneous equation:
$$Q_0(t) = C_1 e^{-t} + C_2 e^{-t/2}.$$ Find a particular solution to the nonhomogeneous equation in the form of
$$Q_1(t) = A \cos(2t) + B \sin(2t).$$ Plugging in the equation, we get: $B = 18/85, A = -21/85$. This Q_1 is the steady-state solution. From the initial conditions, we get: $C_1 = 221/85$, and $C_2 = -74/17$.

Problem 6. A circuit has a capacitor C, an inductor L, and no resistor. The parameters C and L are given. The battery gives you $E(t) = E_0 \cos(\omega t)$. Find ω such that there is a resonance.

Solution. $LQ'' + Q/C = E_0 \cos(\omega t)$. The homogeneous equation is
$$LQ'' + \frac{1}{C} Q = 0.$$
The characteristic equation is
\[L\lambda^2 + \frac{1}{C} = 0 \Rightarrow \lambda^2 = -\frac{1}{LC} \Rightarrow \lambda = \pm \frac{1}{\sqrt{CL}}i. \]
Therefore, the internal frequency is \(1/\sqrt{CL}\). So the resonance is when \(\omega = 1/\sqrt{CL}\).

Problem 7. A circuit has \(R = 1\), \(L = 1\), and no capacitor. The battery gives the constant voltage: \(E(t) = 2\). Suppose initially there were no charge and no current in the system. Find the current at time \(t\). What is the limit of the current as \(t \to \infty\)?

Solution. \(Q'' + Q' = 2, Q(0) = Q'(0) = 0\). Homogeneous equation: \(Q'' + Q' = 0\). The characteristic equation: \(\lambda^2 + \lambda = 0 \Rightarrow \lambda = 0, -1\). So the general solution of the homogeneous equation is
\[Q_0(t) = C_1e^{-t} + C_2. \]
A particular solution to the nonhomogeneous equation is
\[Q_1(t) = At, \]
because the right-hand side 2 corresponds to \(e^{0t}\), but \(\lambda = 0\) is a root of the characteristic equation, so we have to raise the degree of the polynomial from zero to one. You will find \(A = 2\). So the general solution of the original nonhomogeneous equation is
\[Q(t) = Q_0(t) + Q_1(t) = C_1e^{-t} + C_2 + 2t. \]
From the initial conditions, we get: \(C_1 = 2\) and \(C_2 = -2\). So
\[Q(t) = 2e^{-t} - 2 + 2t \Rightarrow I(t) = Q'(t) = -2e^{-t} + 2 \to 2 \text{ as } t \to \infty. \]

Problem 8. A circuit has \(C = 2\), \(L = 4\), and no resistor. There is no battery. The initial charge of the capacitor is \(-1/2\), and the initial current is \(-1\). Find the amplitude, the phase and the initial phase.

Solution.
\[Q/2 + 4Q'' = 0 \Rightarrow Q'' + \frac{1}{8}Q = 0, \quad Q(0) = -1/2, \quad Q'(0) = -1. \]
Therefore,
\[Q(t) = C_1\cos(t/\sqrt{8}) + C_2\sin(t/\sqrt{8}). \]
From the initial conditions, we find: \(C_1 = -1/2\), \(C_2 = -\sqrt{8}\). So
\[Q(x) = -\sqrt{8}\sin(t/\sqrt{8}) - \frac{1}{2}\cos(t/\sqrt{8}). \]
Amplitude: \(A = \sqrt{C_1^2 + C_2^2} = \sqrt{33}/4\). Initial phase:
\[\cos \varphi = \frac{C_2}{A} = \frac{-\sqrt{8}}{\sqrt{33}/4} = -\sqrt{\frac{32}{33}}, \quad \sin \varphi = \frac{C_1}{A} = \frac{-1/2}{\sqrt{33}/4} = -\frac{1}{\sqrt{33}}. \]
Therefore,
\[\varphi = \pi + \sin^{-1}\left(\frac{1}{\sqrt{33}}\right). \]
Phase: \(\varphi + t/\sqrt{8}\).