Lecture 17. Mechanical Vibrations. February 13, 2015

Consider the following model. A body of mass m is moving horizontally on a spring. It slides on a smooth horizontal surface. The position of the body is u (where 0 is the equilibrium). Two forces act upon this body:

- the spring force, which wants to return this body to equilibrium: $F_1 = -ku$, proportional to the distance from the equilibrium. $k > 0$ is a coefficient. The minus sign stands because the force wants to pull the body back to the equilibrium;
- damping: air or water resistance, proportional to the speed: $F_2 = -\gamma u'$, where $\gamma > 0$. The minus sign indicates that the force wants to slow it down.

By Newton’s Second Law, mass times acceleration equals the sum of all forces acting upon this body:

$$mu'' = F_1 + F_2 = -ku - \gamma u'.$$

Therefore,

$$mu'' + \gamma u' + ku = 0.$$

If there is no damping, then we have:

$$mu'' + ku = 0.$$

Let us solve this:

$$u'' + \frac{k}{m}u = 0, \quad u'' + \omega^2 u = 0,$$

where $\omega = \sqrt{k/m}$. Solve this equation: the characteristic equation is $\lambda^2 + \omega^2 = 0 \Rightarrow \lambda = \pm i\omega$. So the general solution is

$$u(t) = C_1 \cos(\omega t) + C_2 \sin(\omega t).$$

This is called harmonic oscillator. It is a very important basic model for physics and engineering. This function $u(t)$ is periodic, with the period

$$T = \frac{2\pi}{\omega}.$$

Which means that for every t, we have $u(t + T) = u(t)$. Why is that? Indeed, for every t we have:

$$C_1 \cos \left(\omega \left(t + \frac{2\pi}{\omega} \right) \right) + C_2 \sin \left(\omega \left(t + \frac{2\pi}{\omega} \right) \right) = C_1 \cos(\omega t + 2\pi) + C_2 \sin(\omega t + 2\pi) = C_1 \cos(\omega t) + C_2 \sin(\omega t).$$

We can write the sum of these trig functions as one trig function, as follows:

$$C_1 \cos(\omega t) + C_2 \sin(\omega t) = \sqrt{C_1^2 + C_2^2} \left(\frac{C_1}{\sqrt{C_1^2 + C_2^2}} \cos(\omega t) + \frac{C_2}{\sqrt{C_1^2 + C_2^2}} \sin(\omega t) \right).$$

Now, let us find angle φ such that

$$\sin \varphi = y = \frac{C_1}{\sqrt{C_1^2 + C_2^2}}, \quad \cos \varphi = x = \frac{C_2}{\sqrt{C_1^2 + C_2^2}}.$$

It is possible, because $x^2 + y^2 = 1$, so the point (x, y) lies on the unit circle. Now, let φ be the angle from the x-axis to the point (x, y); then, by definition of cos and sin, $x = \sin \varphi$ and $y = \cos \varphi$. [See
Fig. 1] The number \(A = \sqrt{C_1^2 + C_2^2} \) is called the **amplitude**, and \(\omega t + \varphi \) is called the **phase**. The angle \(\varphi \) is called the **initial phase**.

\[
u(t) = A (\sin \varphi \cos(\omega t) + \cos \varphi \sin(\omega t)) = A \sin(\varphi t + \omega).
\]

You can view \(\nu(t) \) as the \(y \)-coordinate of a point rotating on the circle with radius \(A \), starting from \(\varphi \), with the speed of rotation \(\omega \) (and period \(T \)). [See Fig. 2]

Now, consider the case \(\gamma > 0 \). Then

\[
m u'' + \gamma u' + ku = 0.
\]

The characteristic equation is

\[
m \lambda^2 + \gamma \lambda + k = 0 \Rightarrow \lambda_{1,2} = \frac{-\gamma \pm \sqrt{\gamma^2 - 4mk}}{2m}.
\]

Case 1. Overdamping. [Fig. 3] \(\gamma^2 - 4mk > 0, \gamma > 2\sqrt{mk} \). Then the roots are real and distinct, and the solutions are

\[
C_1 e^{\lambda_1 t} + C_2 e^{\lambda_2 t}.
\]

Since \(\sqrt{\gamma^2 - 4mk} < \sqrt{\gamma^2} = \gamma \), then we have:

\[
-\gamma + \sqrt{\gamma^2 - 4mk} < 0.
\]

Also,

\[
-\gamma - \sqrt{\gamma^2 - 4mk} < 0.
\]

Therefore, the roots \(\lambda_{1,2} < 0 \), and

\[
u(t) \to 0, \quad t \to \infty.
\]

In this case, damping is so strong that it does not allow oscillations to proceed, and the body goes straight to the equilibrium.

Case 2. Underdamping. [Fig. 4] \(\gamma^2 - 4mk < 0, \gamma < 2\sqrt{mk} \). Then the roots are imaginary:

\[
\lambda = -\frac{\gamma}{2m} \pm i\omega, \quad \omega = \frac{\sqrt{4mk - \gamma^2}}{2m}.
\]

Therefore,

\[
u(t) = C_1 e^{-(\gamma/2m)t} \cos(\omega t) + C_2 e^{-(\gamma/2m)t} \sin(\omega t).
\]

These are oscillations: damping is insufficiently strong to prevent oscillations. But they have decreasing amplitude:

\[
\sqrt{C_1^2 + C_2^2 e^{-(\gamma/2m)t}}.
\]

So this solution also tends to 0 as \(t \to \infty \). But while it tends to zero, it oscillates with frequency \(\omega \). We can write this as

\[
C_1 e^{-(\gamma/2m)t} \cos(\omega t) + C_2 e^{-(\gamma/2m)t} \sin(\omega t) = \sqrt{C_1^2 + C_2^2} e^{-(\gamma/2m)t} \sin(\omega t + \varphi),
\]

as in the previous part of the lecture.

Case 3. Critical damping. [Fig. 3] \(\gamma^2 - 4mk = 0, \gamma = 2\sqrt{mk} \). Then the roots are repeated: \(\lambda = -\gamma/(2m) \), and the solutions are

\[
C_1 t e^{\lambda t} + C_2 e^{\lambda t}.
\]

Since \(\lambda < 0 \), this solutions also tends to zero, just like in the case of overdamping. There are no oscillations.
\[x = \frac{C_1}{\sqrt{C_1^2 + C_2^2}} \quad \text{and} \quad y = \frac{C_2}{\sqrt{C_1^2 + C_2^2}} \]

Fig. 1.

\[u(t) = A \sin(\omega t + \phi) \]

Fig. 2.

Fig. 3. [Overdamping]

Fig. 4. [Underdamping]