Homework 1, due October 8, 2014
Math 307J. Autumn 2014

For each of the differential equations 1-10, find the general solution.

Problem 1. $y' = \lambda y$, $\lambda \in \mathbb{R}$ is a real constant.

Problem 2. $y' = -2y + 1$.

Problem 3. $y' = t^2y^2$.

Problem 4. $y' = y^3e^t$.

Problem 5. $y' = e^{t+y}$.

Problem 6. $y' = (y^2 + 1)/(t^2 + 1)$.

Problem 7. $y' = 2y - t - 1$.

Problem 8. $y' = y/t + t^2$.

Problem 9. $y' = y(1 - y)$ (logistic growth).

Problem 10. $ty' + 3y = t^3$.

Problem 11. Solve the initial value problem $y(0) = 2$ for the equation from Problem 3.

Problem 12. Solve the initial value problem $y(0) = 1$ for the equation from Problem 4.

Problem 13. Solve the initial value problem $y(1) = 0$ for the equation from Problem 8.

Problem 14. Solve the initial value problem $y(-1) = 0$ for the equation from Problem 9.

Problem 15. Consider a pond with volume 1000. It contains volume 1 of toxic waste. The waste is dissolved in the pond, so the result is the well-stirred solution. We would like to clean this pond, so with rate 2 per minute the solution flows out of the pond. With rate 1 per minute, the clean water flows in the pond. What is the concentration of the toxic waste in 100 minutes?

Problem 16. Suppose that you have 1000 in a bank. The annual interest rate is $r = 2\%$, accrued continuously. (i) What amount will you have after one year? (ii) How long do you need to wait until your savings double (that is, you have 2000)?

Problem 17. A home buyer can afford to spend 1000 on mortgage payments per month. He pays continuously, and the annual interest rate us 5%. The interest is also accrued continuously. Determine the amount he can borrow for 15-year mortgage.

Problem 18. A ball with mass m is thrown into the air with initial velocity v_0. The gravitational acceleration is g. Find the maximum height which the ball reaches. When does it reach this maximum height?

Problem 19. A ball with mass m is thrown into the air with initial velocity v_0. This time, it encounters air resistance force which is proportional to v: $F = kv$. What is the maximal height it reaches? (Hint: at the moment of the maximal height, $v = 0$.)