In Problems 1-4, write the general solution of the equation with undetermined coefficients (but do not find the coefficients). Example:

\[y'' - y = 2te^t \Rightarrow y = C_1 e^t + C_2 e^{-t} + (At^2 + Bt)e^t. \]

Indicate which constants are arbitrary parameters (here: \(C_1, C_2 \)) and which are concrete numbers, determined by plugging into the equation (here: \(A, B \)).

Problem 1.

\[4y'' + 4y' + y = \frac{1}{2}te^{-t} + 2 - e^{-t/2}. \]

Problem 2.

\[y'' + 4y' + 8y = (-t^2 + 3)e^{-2t} \cos(2t) + e^{-2t} + 3t^3. \]

Problem 3.

\[y'' - 4y' + 3y = e^{4t} + (2 - t)e^{3t}. \]

Problem 4.

\[y'' - 2y' + y = (t^3 + 2t)e^t + t^2 + (t^2 + 34)e^{3t} \sin(2t). \]

Problem 5. Determine the steady-state solution for mechanical vibrations with \(m = 1, k = 2, \gamma = 1, F_0(t) = 3 \cos t \).

Problem 6. For \(F_0(t) = -2 \sin(\omega t), m = 2, \gamma = 0 \) (no damping), \(k = 8 \), find \(\omega \) which causes the resonance. Find \(u(t) \) for this \(\omega \), if the initial position \(u(0) = 1 \) and the initial speed \(u'(0) = 0 \).

Problem 7. Let \(m = 1, k = 4 \). For which \(\gamma \) is there an overdamping? underdamping? Solve for \(\gamma = 1, u(0) = 1, u'(0) = -1 \), and find the amplitude (dependent on \(t \)), and initial phase.

Problem 8. Consider the body of mass \(m \) moving in the water. Assume there is no gravity. The water resistance is \(kv^2 \), for \(k > 0 \). The initial speed is \(v_0 \). Find the time when the speed is \(v_0/2 \).

Problem 9. Are the following first-order equations linear? separable? autonomous? If they are linear, are they homogeneous or nonhomogeneous? Yes/No.

(i) \(y' = 4y + t \);
(ii) \(ty' = y \);
(iii) \(y' = y^2 \);
(iv) \(yy' = 1 \);
(v) \(y' = y^2 + t \).

Problem 10. Using variation of parameters, find the solution to

\[(1 - t)y'' + ty' - y = 0, \]

given that one solution is \(y_1(t) = t \).

Problem 11. A series circuit has a capacitor of 1, a resistor of 3, and an inductor of 2. The initial charge of the capacitor is \(-2\) and there is no initial current. The battery gives \(E(t) = 3 \cos(2t) \). Find the charge \(Q \) on the capacitor at any time \(t \).