
14.1. Definition

A basis is called *orthogonal* if any two of its vectors are perpendicular. A basis is called *orthonormal* if, in addition, each vector has length one (so it is a unit vector).

For example, \(v_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \) and \(v_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \) form an orthogonal basis of \(\mathbb{R}^2 \), and \(w_1 = \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix} \) and \(w_2 = \begin{bmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \end{bmatrix} \) constitute an orthonormal basis of \(\mathbb{R}^2 \).

14.2. Coordinates

Suppose we want to find the coordinates of the vector \(b = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \) in this basis. In other words, we wish to find \(x_1, x_2 \) such that

\[b = x_1v_1 + x_2v_2. \]

We can solve the system of equations

\[
\begin{bmatrix}
1 & 1 \\
1 & -1
\end{bmatrix}
\begin{bmatrix}
x_1 \\ x_2
\end{bmatrix} =
\begin{bmatrix}
2 \\ 1
\end{bmatrix}
\]

in the usual way, by reducing it to REF. But here we can use the fact that this basis is orthogonal, so \(v_1 \cdot v_2 = 0 \). Multiply the equation \(b = x_1v_1 + x_2v_2 \) by \(v_1 \):

\[b \cdot v_1 = x_1v_1 \cdot v_1 + x_2v_2 \cdot v_1 = x_1v_1 \cdot v_1, \Rightarrow x_1 = \frac{b \cdot v_1}{v_1 \cdot v_1} = \frac{3}{2}. \]

The same can be done with \(x_2 \):

\[b \cdot v_2 = x_1v_1 \cdot v_2 + x_2v_2 \cdot v_2 = x_2v_2 \cdot v_2 \Rightarrow x_2 = \frac{b \cdot v_2}{v_2 \cdot v_2} = \frac{1}{2}. \]

Here, we are doing orthogonal projections of the vector \(b \) onto the vectors \(v_1, v_2 \). It is like orthogonal projections of \(b \) onto the coordinate axes, because orthogonal vectors serve as kind of new coordinate axes.

14.3. Making an Orthogonal Basis

Suppose we have a basis

\[v_1 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \quad v_2 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \quad v_3 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \]

We would like to construct an orthogonal basis from it. Let us find it in the form:

\[w_1 = v_1, \quad w_2 = v_2 + \alpha w_1, \quad w_3 = v_3 + \beta w_1 + \gamma w_2. \]

So we are projecting the second vector \(v_2 \) on the direction which is orthogonal to the first vector. And we are projecting the third vector \(v_3 \) on the direction orthogonal to the first two vectors. First, we make the first two vectors perpendicular, then we do the same with the third one.
Here, α, β, γ are coefficients which have to be determined. We want: $w_2 \cdot w_1 = 0$. So

$$v_1 \cdot v_2 + \alpha v_1 \cdot v_1 = 0 \Rightarrow \alpha = -\frac{v_1 \cdot v_2}{v_1 \cdot v_1} = -\frac{1}{2}.$$

And

$$w_2 = v_2 + \alpha w_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} - \frac{1}{2} \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ -1/2 \\ 1/2 \end{bmatrix}$$

Moreover,

$$w_1 \cdot w_3 = 0 \Rightarrow \beta w_1 \cdot w_1 + \gamma w_2 \cdot w_1 + v_3 \cdot w_1 = 0 \Rightarrow \beta w_1 \cdot w_1 + v_3 \cdot w_1 = 0 \Rightarrow \beta = -\frac{v_3 \cdot w_1}{w_1 \cdot w_1} = -\frac{1}{2},$$

and

$$w_2 \cdot w_3 = 0 \Rightarrow \beta w_1 \cdot w_2 + \gamma w_2 \cdot w_2 + v_3 \cdot w_2 = 0 \Rightarrow \gamma w_2 \cdot w_2 + v_3 \cdot w_2 = 0 \Rightarrow \gamma = -\frac{v_3 \cdot w_2}{w_2 \cdot w_2} = -\frac{1}{3}.$$

Thus,

$$w_3 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} - \frac{1}{2} \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} - \frac{1}{3} \begin{bmatrix} 1 \\ -1/2 \\ 1/2 \end{bmatrix} = \begin{bmatrix} 2/3 \\ 2/3 \\ -2/3 \end{bmatrix}$$

So we got the following orthogonal basis:

$$w_1 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \quad w_2 = \begin{bmatrix} 1 \\ -1/2 \\ 1/2 \end{bmatrix}, \quad w_3 = \begin{bmatrix} 2/3 \\ 2/3 \\ -2/3 \end{bmatrix}$$