15. Line Integrals of Vector Fields II. February 13, 2013

15.1. Calculation Example

Find \(\int_{C} F \cdot dr \), where \(F(x, y) = e^{x-1}i + xyj \), \(C : r(t) = t^2i + t^3j \), \(0 \leq t \leq 1 \).

This is one of the practice problems. We have: \(x(t) = t^2 \), \(y(t) = t^3 \), and

\[
r'(t) = <2t, 3t^2>, \quad F(r(t)) = e^{t^2-1}i + t^2t^3j = <e^{t^2-1}, t^5>
\]

Therefore,

\[
r'(t) \cdot F(r(t)) = 2te^{t^2-1} + 3t^7.
\]

We have:

\[
\int_{C} F \cdot dr = \int_{0}^{1} \left[2te^{t^2-1} + 3t^7 \right] dt = \int_{0}^{1} 2te^{t^2-1}dt + \left. \frac{3t^8}{8} \right|_{t=1}^{t=0} = \int_{-1}^{0} e^u du + \frac{3}{8} = 1 - e^{-1} + \frac{3}{8}
\]

Here, we let

\[
u = t^2 - 1, \quad du = 2tdt, \quad 0 \leq t \leq 1 \implies -1 \leq u \leq 0.
\]

15.2. Independence of Path Example

Show that the integral

\[
\int_{C} 2xe^{-y}dx + (2y - x^2e^{-y})dy,
\]

where \(C \) is any path from \((1, 0)\) to \((2, 1)\), is independent of this path, and find it. This is another practice problem. Independence of path means that if \(C_1 \) and \(C_2 \) are two paths from \((1, 0)\) to \((2, 1)\), then the integrals along them of this vector field are equal. We need to find a function \(f(x, y) \) such that

\[
F(x, y) = 2xe^{-y}i + (2y - x^2e^{-y})j = \nabla f.
\]

First of all, let us show that \(F \) is a conservative vector field (=a gradient vector field). It is sufficient to show that \(\text{curl} F = 0 \), see Lecture 13. We have:

\[
\text{curl} F = \begin{vmatrix}
i & j & k \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
2xe^{-y} & 2y - x^2e^{-y} & 0
\end{vmatrix} = \left((2y - x^2e^{-y})_x - (2xe^{-y})_y \right) k = \left[-2xe^{-y} + 2xe^{-y} \right] k = 0.
\]

Now, we need to find this function \(f \). This is done as follows:

\[
f_x = 2xe^{-y}, \quad f_y = 2y - x^2e^{-y},
\]

from the first equation, integrate with respect to \(x \):

\[
f(x, y) = \int 2xe^{-y}dx + g(y) = x^2e^{-y} + g(y),
\]

and then take a derivative with respect to \(y \):

\[
-x^2e^{-y} + g'(y) = 2y - x^2e^{-y}, \quad g'(y) = 2y, \quad g(y) = y^2.
\]
Therefore,

\[f(x, y) = y^2 + x^2 e^{-y}. \]

By the Fundamental Theorem of Calculus for Line Integrals, we have:

\[
\int_C \mathbf{F} \cdot d\mathbf{r} = \int_C \nabla f \cdot d\mathbf{r} = f(2, 1) - f(1, 0) = (1 + 4e^{-1}) - 1 = 4e^{-1}
\]

The result does not depend on the curve \(C \), as long as it starts from \((1, 0)\) and ends at \((2, 1)\).