
16.1. Motivation and Definition

Assume we have a planar region \(\Sigma \) of area \(S \), with a normal vector \(n \), and a constant vector field \(F \). Then the flux or flow of this field through \(\Sigma \) is defined as

\[
(F \cdot n)S.
\]

It has the meaning of the rate of flow through \(\Sigma \). Indeed, assume \(F = v \) is the velocity of fluid flowing through the surface \(\Sigma \). How much volume will flow through \(\Sigma \) during time \(\Delta t \)? This volume has base \(\Sigma \) with area \(S \) and height \(\cos \theta |F| = n \cdot v \), where \(\theta \) is the angle between \(v \) and \(n \). So this volume is equal to \(S(n \cdot v)\Delta t \). Therefore, the rate of this flow is \(S(n \cdot v) \).

Now, assume we have a parametric surface \(\Sigma \), which is not necessarily a plane. It is given by parametric equations \(r = r(u,v), \ (u,v) \in D \), where \(D \subseteq \mathbb{R}^2 \) is some region. Assume we have a normal vector \(n(x,y,z) \) with length \(|n| = 1 \) assigned at each point \((x,y,z)\in \Sigma \). Assume that \(n(x,y,z) \) continuously depends on the point \((x,y,z)\). Consider a vector field \(F(x,y,z) \). Let us define the flux of the field \(F \) through \(\Sigma \), or the surface integral of \(F \) over \(\Sigma \):

\[
\int \int _{\Sigma} F \cdot dS = \int \int _{D} (F \cdot n) \, dA
\]

We split the surface \(\Sigma \) into small patches and calculate the flux through each patch, assuming it is planar. The notation \(dS \) stands for \(n \, dA \), this is "a small vector element of area".

This definition depends on orientation, that is, the choice of \(n \). There are two options, \(n_1 \) and \(n_2 \): on one side or on the other side of the surface. We always have: \(n_1 = -n_2 \), so these orientations are opposite. If a surface is closed, then we take by default \(n \) pointing outward. This is called positive orientation. So we always take a surface together with its orientation. If you switch to the other orientation, the surface integral changes its sign.

16.2. Calculation Formula

If we have a parametric surface \(r = r(u,v) \) which is smooth, i.e. \(r_u \) and \(r_v \) are not parallel, then we can take

\[
 n = \frac{r_u \times r_v}{|r_u \times r_v|}
\]

Indeed, \(r_u \) and \(r_v \) are tangent vectors to the surface, so their cross product is orthogonal to it. We need to divide by its magnitude to ensure \(|n| = 1 \). The element of surface area is \(dS = |r_u \times r_v| \, dA \), and

\[
\int \int _{\Sigma} F \cdot dS = \int \int _{D} F(r(u,v)) \cdot \frac{r_u \times r_v}{|r_u \times r_v|} \, r_u \times r_v \, dA = \int \int _{D} F(r(u,v)) \cdot (r_u \times r_v) \, dA
\]

16.3. Examples

1. Let \(F = k \), and \(\Sigma \) be the graph \(z = (x^2 + y^2)/2, \quad 0 \leq x,y \leq 1 \). Choose upward orientation, so that \(n \) points up. We have:

\[
r(u,v) = ui + vj + \frac{1}{2}(u^2 + v^2)k, \quad r_u = i + uk, \quad r_v = j + vk,
\]
and \(\mathbf{r}_u \times \mathbf{r}_v = < -u, -v, 1 > \). This normal vector indeed points up, because its third component is greater than zero. Otherwise, we needed to put a minus sign near this vector. Therefore, \(\mathbf{F} \cdot (\mathbf{r}_u \times \mathbf{r}_v) = 0 \cdot (-u) + 0 \cdot (-v) + 1 \cdot 1 = 1 \), and

\[
\iint_S \mathbf{F} \cdot d\mathbf{S} = \int_0^1 \int_0^1 1 \, dudv = 1
\]

2. Let \(\mathbf{F} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k} \), and suppose \(\Sigma \) is the cylinder \(x^2 + y^2 = 1, \ 0 \leq z \leq 1 \), with outward orientation. This is a parametric surface:

\[
\mathbf{r}(u, v) = < \cos u, \sin u, v >, \ 0 \leq u < 2\pi, \ 0 \leq v \leq 1.
\]

So \(D = \{ 0 \leq u < 2\pi, \ 0 \leq v \leq 1 \} \). We have:

\[
\mathbf{r}_u = < -\sin u, \cos u, 0 >, \ \mathbf{r}_v = < 0, 0, 1 >, \ \mathbf{r}_u \times \mathbf{r}_v = < \cos u, \sin u, 0 >.
\]

This is indeed an outward orientation. (Just draw a picture.) Also, \(\mathbf{F}(\mathbf{r}(u, v)) = < \cos u, \sin u, v > \), hence \(\mathbf{F}(\mathbf{r}(u, v)) \cdot (\mathbf{r}_u \times \mathbf{r}_v) = \cos^2 u + \sin^2 u = 1 \). Thus,

\[
\iint_S \mathbf{F} \cdot d\mathbf{S} = \iint_D 1 \, dA = \text{Area}(D) = 2\pi
\]