3. Triple Integrals

3.1. Physical Meaning of Double Integrals

Consider a lamina occupying a region \(D \subseteq \mathbb{R}^2 \) with density function \(\rho(x,y) \). Then its total mass is

\[
\int\int_D \rho(x,y) dA.
\]

Indeed, assume for simplicity that \(D \) is a rectangle. We can split it into small subrectangles \(R_1, \ldots, R_n \), and choose a point \((x_i, y_i)\) in each subrectangle. On each subrectangle \(R_i \), the density \(\rho(x,y) \) is almost constant: \(\rho(x,y) \approx \rho(x_i, y_i) \). The mass of \(R_i \) is approximately its area times this almost constant density: \(\rho(x_i, y_i) \text{Area}(R_i) \). Thus, the total mass is approximately

\[
\sum_{i=1}^{n} \rho(x_i, y_i) \text{Area}(R_i) \approx \int\int_D \rho(x,y) dA.
\]

3.2. Triple Integrals over Boxes

They are defined and calculated in much the same way as double integrals. First, assume \(B \) is a box, i.e. a region of the type

\[
B = [a,b] \times [c,d] \times [p,q] = \{a \leq x \leq b, c \leq y \leq d, p \leq z \leq q\}.
\]

Assume a function \(f : B \to \mathbb{R} \) is defined on this box. Let us split it into small sub-boxes \(B_1, B_2, \ldots, B_n \). Pick a point \((x_1, y_1, z_1)\) in \(B_1 \), \((x_2, y_2, z_2)\) in \(B_2 \), \ldots in each of these small boxes. Then

\[
\int\int\int_B f dV = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i, y_i, z_i) \text{Vol}(B_i),
\]

where the limit is taken as the sizes of boxes tend to zero. We can calculate it as an interated integral:

\[
\int\int\int_B f dV = \int_p^q \int_c^d \int_a^b f(x, y, z) dxdydz.
\]

We can take any order of integration, say first \(y \), then \(z \), then \(x \). The result will be the same.

You cannot visualize it as the region under the graph of \(f \), this would require 4D space. However, you can visualize it as a mass of lamina occupying the region \(B \) with density \(\rho(x,y,z) \) at the point \((x,y,z)\). This is similar to a double integral as the mass of a lamina.

3.3. Example 1

Evaluate \(\int\int\int_B yz dV \), where \(B = [0,1] \times [0,1] \times [0,1] \). We have:

\[
\int\int\int_B yz dV = \int_0^1 \left[\int_0^1 \left[\int_0^1 yz d\zeta \right] dy \right] dx = \int_0^1 \left[\int_0^1 \frac{yz^2}{2} \bigg|_{z=0}^{z=1} \right] dy \ dx = \int_0^1 \left[\int_0^1 \frac{y}{2} dy \right] dx = \int_0^1 \left[\int_0^1 \frac{y}{4} \bigg|_{y=0}^{y=1} \right] dx = \int_0^1 \frac{1}{4} dx = \frac{x}{4} \bigg|_{x=0}^{x=1} = \frac{1}{4}.
\]
3.4. Triple Integrals over General Regions

Consider a bounded region \(E \subseteq \mathbb{R}^3 \) and a function \(f : E \to \mathbb{R} \). Let us define the \textit{triple integral of f over E}. Since \(E \) is bounded, enclose it into a box \(B \). Extend \(f \) onto \(B \) by assigning it zero values (inside \(B \) and outside \(E \)). By definition,

\[
\int \int \int_E f \, \text{d}V = \int \int \int_B f \, \text{d}V.
\]

The method of calculation is the same as for double integrals. Assume

\[
E = \{(x, y) \in D, \ u_1(x, y) \leq z \leq u_2(x, y)\}.
\]

Then

\[
\int \int \int_E f \, \text{d}V = \int \int_D \left[\int_{u_1(x,y)}^{u_2(x,y)} f(x, y, z) \, \text{d}z \right] \, \text{d}A
\]

The same can be done with the roles of \(x, y, z \) interchanged.

3.5. Example 2

Find \(\int \int \int_E zdV \), where \(E = \{x^2 + y^2 \leq 1, \ 0 \leq z \leq \sqrt{x^2 + y^2}\} \). Here, \(D = \{x^2 + y^2 \leq 1\} \), and \(u_1(x,y) = 0, \ u_2(x,y) = \sqrt{x^2 + y^2} \). This is equal to

\[
\int \int_D \left[\int_0^{\sqrt{x^2+y^2}} z \, \text{d}z \right] \, \text{d}A = \int \int_D \frac{z^2}{2} \bigg|_{z=0}^{z=\sqrt{x^2+y^2}} \, \text{d}A = \int \int_D \frac{x^2 + y^2}{2} \, \text{d}A.
\]

Here, use polar coordinates: \(D = \{0 \leq r \leq 1, \ 0 \leq \theta \leq 2\pi\} \), and \(dA = rdrd\theta \). Therefore, we have:

\[
\int_0^{2\pi} \int_0^1 \frac{r^2}{2} \, r \, d\theta = \frac{1}{2} \int_0^{2\pi} d\theta \int_0^1 r^3 \, dr = \frac{1}{2} \cdot 2\pi \cdot \left. \frac{r^4}{4} \right|_{r=0}^{r=1} = \frac{\pi}{4}
\]