Axioms of Probability

Problem 1. Pick a random number from 1 to 1000. Find the probabilities of the following events:
 (i) This number is not divisible by any of the numbers 2, 3, 5?
 (ii) This number is not divisible by 3 but is divisible either by 2 or by 5?

Problem 2. Consider three events: A, B, C. Draw the diagram for each of the following events:

 $(A \setminus B) \setminus C$, $A \setminus (B \setminus C)$, $(A \cap (C \setminus B)) \cup C$,

 $(B \setminus A) \cup (A \setminus C)$, $A \cup (B \cap C)$, $A^c \setminus B$.

Problem 3. Consider the event $A \triangle B = (A \setminus B) \cup (B \setminus A)$. It is called the symmetric difference of A and B and means: either A or B, but not both. Express its probability as a combination of $P(A)$, $P(B)$ and $P(A \cap B)$.

Problem 4. There are two computers and a printer. Consider the following events: $A = \{\text{first computer works}\}$, $B = \{\text{second computer works}\}$, $C = \{\text{the printer works}\}$. The system is functioning if at least one of the computers is working and the printer is working. Express this event in terms of A, B and C.

Problem 5. When is the equality $A \cap B = A \cup B$ possible?

Problem 6. Roll a die n times.
 (i) Calculate the probability $p(n)$ that you get at least one six.
 (ii) What is the minimal n such that $p(n) > 99\%$?

Problem 7. (Variation of the Birthday Problem.) Suppose you take n people and for each of them, the probability that he was born at any given month is $1/12$.
 (i) Calculate $p(n)$, the probability that some of them have the same month.
 (ii) What is the minimal n such that $p(n) > 50\%$?

Problem 8. (from an actuarial exam) The probability that there are n insured losses throughout a year obey the rule $p_{n+1} = p_n/5$. What is the probability that there are two or more insured losses?

Problem 9. We seat 10 people at the table: five men and five women. What is the probability that men sit together or women sit together?

Problem 10. A judge chooses a jury of n people out of a pool of N people. The choice is uniform among all subsets of n elements of the pool. Unhappy with an outcome, he dissolves this jury (returning the people into the pool) and chooses another jury of m people, independently of the first jury. What is the probability that the first jury and the second jury have k common people?
(i) Solve the problem in general form.
(ii) Find the decimal value for \(N = 1000, n = m = 2, k = 1. \)

Problem 11. Roll a fair die 10 times. Compute the probability that at least one number occurs:
(i) exactly 9 times;
(ii) exactly 5 times.

Problem 12. (i) Suppose you wish to put numbers 1...\(n \) into \(m \) different bags. Empty bags are allowed. Find the number of ways to do this.
(ii) Find the sum of all multinomial coefficients

\[\sum \binom{n}{i_1, \ldots, i_m}, \]

where the sum is over all integers \(i_1, \ldots, i_m \geq 0 \) such that \(i_1 + \ldots + i_m = n \). Do this in two ways: using the formula from Problem 13 of HW 1 and using logic and part (i).