Problem 1. You take five preliminary exams, and you will pass each exam with probability \(\frac{1}{3} \), independently of other exams. What is the probability that you will pass two or more exams?

Solution. The number \(X \) of passed exams has the Binomial distribution \(X \sim \text{Bin}(5, \frac{1}{3}) \). Therefore,

\[
P(X \geq 2) = 1 - P(X = 0) - P(X = 1) = 1 - \left(1 - \frac{1}{3}\right)^5 - \binom{5}{1} \left(1 - \frac{1}{3}\right)^4 \frac{1}{3}
\]

\[
= 1 - \left(\frac{2}{3}\right)^5 - 5 \left(\frac{2}{3}\right)^4 \frac{1}{3} = 0.54
\]

Problem 2. Toss a fair coin three times. Let \(X \) be the number of Heads during the first two tosses. Let \(Y \) be the number of Tails during the last two tosses. For example, if the sequence of tosses is TTH, then \(X = 0 \) and \(Y = 1 \). Are \(X \) and \(Y \) independent? Why or why not?

Solution. They are dependent, because \(P(X = 0) = \frac{1}{4} \) and \(P(Y = 0) = \frac{1}{4} \), but \(P(X = 0, Y = 0) = 0 \). Indeed, the second toss must be either Heads or Tails, which will count in either \(X \) or \(Y \): either \(X \geq 1 \) or \(Y \geq 1 \) (or both).