Concentration of Measure for Stochastic Heat Equation

Andrey Sarantsev

University of California, Santa Barbara
Department of Statistics and Applied Probability

March 29, 2018

Joint work with Davar Khoshnevisan
Order $p \geq 1$.

Metric space (\mathcal{X}, ρ).

Two probability measures \mathbb{P} and \mathbb{Q} on \mathcal{X}.

Wasserstein distance of order p:

$$W_p(\mathbb{P}, \mathbb{Q}) = \inf \left[\mathbb{E} \rho^p(X, Y) \right]^{1/p}$$

where the infimum is taken over all couplings $(X, Y) \sim (\mathbb{P}, \mathbb{Q})$.

It is also called **Kantorovich distance**

Convergence in $W_p = \text{weak conv.} + \text{conv. of } p\text{th moments}$
Relative Entropy

Metric space \((\mathcal{X}, d)\).

Two probability measures \(P\) and \(Q\) on \(\mathcal{X}\).

Relative Entropy or Kullback-Leibler divergence:

\[
\mathcal{H}(Q \mid P) = \mathbb{E}^{P} [\varphi \ln(\varphi)], \quad \varphi := \frac{dQ}{dP},
\]

if \(Q \ll P\) and \(\infty\) otherwise.

This is a generalization of entropy of the distribution \((p_1, \ldots, p_n)\):

\[
H(p) = -p_1 \ln p_1 - \ldots - p_n \ln p_n.
\]
We write $\mathbb{P} \in T_p(C)$ if for every $Q \ll \mathbb{P}$ we have:

$$\mathcal{W}_p(\mathbb{P}, Q) \leq \sqrt{2C\mathcal{H}(Q \mid \mathbb{P})}.$$

We say \mathbb{P} satisfies transportation-cost information inequality or Talagrand concentration inequality of order p with constant C.

For $1 \leq q < p$, $T_p(C)$ is stronger than $T_q(C)$.
Gaussian measure $\mathcal{N}(0, I_d)$ satisfies $T_2(C)$ with $C = 1$ on the space \mathbb{R}^d with the Euclidean norm.

Brownian motion $W = (W(t), 0 \leq t \leq T)$ satisfies $T_2(C)$ with $C = T$ on $C[0, T]$ with the max-norm.

Pinsker inequality: Every \mathbb{P} satisfies $T_1(C)$ with $C = 1/4$ with discrete metric $\rho(x, y) = 1$ for $x \neq y$.
1-Lipschitz function $f : \mathcal{X} \to \mathbb{R}$: $|f(x) - f(y)| \leq \rho(x, y)$.

Theorem (Marton, 1996)

If $\mathbb{P} \in T_1(C)$, then for any 1-Lipschitz function $f : \mathcal{X} \to \mathbb{R}$ with median $m(f)$ we have a Gaussian tail estimate

$$\mathbb{P}(|f - m(f)| \geq \delta) \leq 2 \exp \left(-\frac{\delta^2}{8C}\right), \quad \delta \geq 2\sqrt{2C \log 2}.$$

In fact, the converse is also true: Gaussian tail implies T_1.

Theorem (Bobkov, Gotze, 1999; Djellout, Guillin, Wu, 2004)

If \mathbb{P} has first moment on \mathcal{X}, then $\mathbb{P} \in T_1(C)$ if and only if for all 1-Lipschitz functions $f : \mathcal{X} \to \mathbb{R}$ with $\int f \, d\mathbb{P} = 0$, and all $a > 0$,

$$\int e^{af} \, d\mathbb{P} \leq e^{a^2C/2}.$$
If $P, Q \in T_2(C)$, then $P \times Q \in T_2(C)$ on the product space $\mathcal{X} \times \mathcal{X}$ with distance

$$
\rho_2((x_1, y_1), (x_2, y_2)) = \left[\rho^2(x_1, x_2) + \rho^2(y_1, y_2) \right]^{1/2}.
$$

This property holds only for order 2. (Ledoux, 2001)

Poincare inequality $\text{Var}_\mu(f) \leq C \int |\nabla f|^2 \, d\mu$ follows from $T_2(C)$.
Any probability measure with Gaussian tail satisfies T_1.

A Bernoulli measure on $\{0, 1\}$ does not satisfy T_p for $p > 1$.

Therefore, any measure with disconnected support (where components are at a positive distance from each other) does not satisfy T_p for $p > 1$.
The process $X = (X(t), t \geq 0)$ in \mathbb{R}^1 satisfies

$$dX(t) = g(t, X(t)) \, dt + \sigma(t, X(t)) \, dW(t), \quad X(0) = x.$$

Bounded σ: $|\sigma(t, x)| \leq K_\sigma$. **Lipschitz g and σ:**

$$|g(t, x) - g(t, y)| \leq L_g |x - y|, \quad |\sigma(t, x) - \sigma(t, y)| \leq L_\sigma |x - y|,$$

Then X in $C[0, T]$ satisfies $T_2(C_T)$ with

$$C_T := 3K_\sigma^2 T \exp \left[3T^2 L_g^2 + 12L_\sigma^2 T \right].$$

Similarly in \mathbb{R}^d, with Euclidean norm and Frobenius matrix norm. (Pal, 2012)
Proof Sketch

For every $Q \ll P$, there exist a process Z such that, under Q,

$$\tilde{W}(t) = W(t) - \int_0^t Z(s) \, ds, \quad \text{is a Brownian motion;}$$

$$\mathcal{H}(Q \mid P) = \frac{1}{2} \mathbb{E}^Q \int_0^T Z^2(t) \, dt.$$

Couple (P, Q) as follows under Q:

$$dX(t) = g(t, X(t)) \, dt + \sigma(t, X(t))Z(t) \, dt + \sigma(t, X(t)) \, d\tilde{W}(t),$$

$$dY(t) = g(t, Y(t)) \, dt + \sigma(t, Y(t)) \, d\tilde{W}(t), \; X(0) = x.$$

Apply martingale inequalities and Gronwall’s lemma to prove

$$\mathbb{E}^Q \max_{0 \leq t \leq T} |X(t) - Y(t)|^2 \leq C_T \cdot \mathbb{E}^Q \int_0^T Z^2(t) \, dt.$$
Unknown function: $u(t, x), t \geq 0, 0 \leq x \leq 1$.

$$\frac{\partial u}{\partial t} = \mathcal{L}u(t, x) + g(x, u(t, x)) + \sigma(x, u(t, x)) \dot{W}(t, x).$$

Operator: $\mathcal{L} = \frac{1}{2} \frac{\partial^2}{\partial x^2}$ (Laplace in 1D)

Initial condition: $u|_{t=0} = u_0(x)$, deterministic.

Boundary condition: $u|_{x=0} = u|_{x=1} = 0$ (Dirichlet).

Space-time white noise: $W(t, x)$, “flickers” of independent noise at every point (t, x).
Mild Solution

Defined as a function $u(t, x)$, satisfying

$$
u(t, x) = \int_{\mathbb{R}} u_0(y) G(t, x, y) \, dy$$

$$+ \int_{\mathbb{R}} \int_{0}^{t} g(y, u(s, y)) G(t - s, x, y) \, ds \, dy$$

$$+ \int_{\mathbb{R}} \int_{0}^{t} \sigma(y, u(s, y)) G(t - s, x, y) \, \mathcal{W}(ds, dy).$$

$G(t, x, y)$: **Fundamental solution (heat kernel)** of operator \mathcal{L} with given boundary conditions; **transition density** of the corresponding stochastic process (absorbed Brownian motion on $[0, 1]$)
Assumptions

Drift coefficient g: $|g(x, u) - g(x, v)| \leq L|u - v|$.

Diffusion coefficient $\sigma \equiv 1$.

Solution exists and is unique, is a.s. continuous.

Works only in dimension 1: For spatial dimension 2 or more, the solution to the stochastic heat equation as a function does not even exist!
Consider the max-norm on the space $C([0, T] \times [0, 1])$ of continuous functions $u : [0, T] \times [0, 1] \rightarrow \mathbb{R}$.

Theorem (Khoshnevisan, S, 2017)

The distribution of u satisfies $T_2(C)$ in the space $C([0, T] \times [0, 1])$, with

$$C = 2G_T \exp(2L^2T^2), \quad G_T := \pi^{-1/2}\sqrt{T}.$$
Similarly to SDE, we represent $\mathbb{Q} \ll \mathbb{P}$ by Girsanov transformation:

There exists a field $Z(t, x)$ such that, under \mathbb{Q},

$$\tilde{W}(dt, dx) = W(dt, dx) - Z(t, x) \, dt \, dx,$$

is a space-time white noise. Moreover,

$$\mathcal{H}(\mathbb{Q} \mid \mathbb{P}) = \frac{1}{2} \mathbb{E}^\mathbb{Q} \int_0^T \int_{\mathbb{R}} Z^2(t, x) \, dt \, dx.$$

Couple (\mathbb{P}, \mathbb{Q}) via solutions of SPDE.
Similar results hold for other operators \mathcal{L} instead of Laplacian:

- fractional Laplacian: α-stable Lévy process
- general second-order differential operator: stochastic differential equation

and different boundary conditions:

- Neumann: $u_x|_{x=0} = u_x|_{x=1} = 0$: reflected process
- periodic: $u|_{x=0} = u|_{x=1}$, $u_x|_{x=0} = u_x|_{x=1}$: process on the circle

$$\text{Need } G_T := \sup_{0 \leq x \leq 1} \int_0^T \int_0^1 G^2(t, x, y) \, dy \, dt.$$
Instead of $C([0, T] \times [0, 1])$, take $L^2([0, T] \times [0, 1])$, with L^2-norm. Diffusion σ is not necessarily 1, needs to be Lipschitz and bounded. Another result, with a complicated constant C_T.