Concentration of Measure for Stochastic Heat Equation

Andrey Sarantsev

University of California, Santa Barbara
Department of Statistics and Applied Probability

November 16, 2017

Joint work with Davar Khoshnevisan
Order \(p \geq 1 \).

Metric space \((\mathcal{X}, d)\).

Two probability measures \(\mathbb{P} \) and \(\mathbb{Q} \) on \(\mathcal{X} \).

Wasserstein Distance of Order \(p \):

\[
W_p(\mathbb{P}, \mathbb{Q}) = \inf \left[\mathbb{E} d^p(X, Y) \right]^{1/p}
\]

where the infimum is taken over all couplings \((X, Y) \sim (\mathbb{P}, \mathbb{Q})\).

Convergence in \(W_p \) = weak convergence + convergence of \(p \)th moments.
Relative Entropy

Metric space (\mathcal{X}, d).

Two probability measures \mathbb{P} and \mathbb{Q} on \mathcal{X}.

Relative Entropy:

$$\mathcal{H}(\mathbb{Q} \mid \mathbb{P}) = -\mathbb{E}_{\mathbb{P}} \frac{d\mathbb{Q}}{d\mathbb{P}} \log \frac{d\mathbb{Q}}{d\mathbb{P}}$$

if $\mathbb{Q} \ll \mathbb{P}$ and ∞ otherwise.

This is a generalization of entropy of the distribution (p_1, \ldots, p_n):

$$H(p) = -p_1 \log p_1 - \ldots - p_n \log p_n.$$
We write $\mathbb{P} \in T_p(C)$ if for every $Q \ll \mathbb{P}$ we have:

$$\mathcal{W}_p(\mathbb{P}, Q) \leq \sqrt{2C \mathcal{H}(Q \mid \mathbb{P})}.$$

We say \mathbb{P} satisfies transportation-cost information inequality or Talagrand concentration inequality of order p with constant C.

For $1 \leq q < p$, $T_p(C) \subseteq T_q(C)$.
Gaussian Tail Estimate: If $\mathbb{P} \in T_1(C)$, then for any 1-Lipschitz function $f : \mathcal{X} \to \mathbb{R}$ with median $m(f)$ we have:

$$\mathbb{P}(|f - m(f)| \geq \delta) \leq 2 \exp(-\delta^2/8C), \quad \delta \geq 2\sqrt{2C \log 2}.$$

Marton (1996)

Tensorization: If $\mathbb{P}, \mathbb{Q} \in T_2(C)$, then $\mathbb{P} \times \mathbb{Q} \in T_2(C)$ with appropriate norm. This property holds only for order 2.

Ledoux (2001)
The following list is far from complete:

General theory:
- Talagrand (1996)
- Bobkov, Gotze (1999)
- Ledoux (2001)

Stochastic differential equations:
- Pal (2012)
- Cattiaux, Guillin (2013)
- Pal, Shkolnikov (2014)

Applications:
- Massart (2007): model selection
- Dubhashi, Panconesi (2012): randomized algorithms
- Lacker (2015): stochastic finance
Unknown function: \(u(t, x), t \geq 0, 0 \leq x \leq 1. \)

\[
\frac{\partial u}{\partial t} = \frac{1}{2} \frac{\partial^2 u}{\partial x^2} + g(x, u) + \dot{W}(t, x).
\]

Initial condition: \(u|_{t=0} = u_0(x), \) deterministic.

Boundary condition: \(u|_{x=0} = u|_{x=1} = 0. \)

Space-time white noise: \(W(t, x), \) “flickers” of independent noise at every point \((t, x)\).

Drift coefficient \(g: \) \(|g(x, u) - g(x, v)| \leq L|u - v|. \)

Solution exists and is unique, is a.s. continuous.
The distribution of u satisfies $T_2(C)$ in the space of continuous functions $u : [0, T] \times [0, 1] \to \mathbb{R}$ with the supremum norm, and with

$$C = 2\pi^{-1/2} \sqrt{T} \exp(2L^2 T^2).$$

(Khoshnevisan, S, 2017)
Similar results hold for:
More general operators instead of $\frac{\partial^2}{\partial x^2}$: fractional derivative, second-order differential operators.
Additional diffusion term $\sigma(x, u) \dot{W}$.
Different norms (integral instead of maximum).
Neumann boundary conditions.
Many dimensions.
Space-colored instead of space-white noise.