Market Models with Splits and Mergers

Andrey Sarantsev
Joint work with Ioannis Karatzas
University of Washington, Seattle

May 8, 2015
Competing Brownian Particles

We have N Brownian particles on the real line:

$$X_1(t), \ldots, X_N(t).$$

Rank them from top to bottom:

$$X_{(1)}(t) \geq X_{(2)}(t) \geq \ldots \geq X_{(N)}(t).$$

The particle which is currently the kth highest has rank k.

Main Rule: the particle which currently has rank k moves as a Brownian motion with drift g_k and diffusion σ_k^2.

CBP-Based Market Model: Capitalizations of N stocks

$$Y_1(t) = e^{X_1(t)}, \ldots, Y_N(t) = e^{X_N(t)}.$$
Diversity

Market weight of the ith company

$$\mu_i(t) = \frac{Y_i(t)}{Y_1(t) + \ldots + Y_N(t)}$$

A market model is diverse if $\mu_i(t) \leq 1 - \delta$ for all i and t, where $\delta \in (0, 1)$ is fixed.

Such models allow an arbitrage: a portfolio which beats the market (Fernholz, 2002; Fernholz, Karatzas, Kardaras, 2005; Fernholz, Karatzas, 2009).

Fact: The CBP-based market model is not diverse.
Try to amend the CBP model to make it diverse. Allow for a changing number of stocks (Strong, 2011).

Splits: When a company’s market weight reaches $1 - \delta$, forcefully split it into two companies of random size.

Mergers: Set an exponential clock with rate λ_N, where N is the current number of companies. When it rings, choose randomly two companies and merge them. If the resulting company has market weight greater than or equal to $1 - \delta$, this merger is suppressed. Otherwise, it is allowed to proceed.
N stocks at time t: $(\pi_0(t), \ldots, \pi_N(t))$

- $\pi_0(t) + \ldots + \pi_N(t) = 1$
- $|\pi_i(t)| \leq K$ for K independent of i, N, t
- $\pi_0(t)$ is the share of the current capital invested in money
- $\pi_i(t)$ is the share invested in the ith stock

When two companies merge, then the portfolio weight corresponding to the new company’s stock is the sum of the portfolio weights corresponding to the two old stocks.

When a company gets split into two new ones, then its weight in the portfolio is partitioned in proportion to the weights of the newly created companies.
An investor starts with initial capital 1 and invests in the stock market according to a portfolio π. The wealth process $V^\pi = (V^\pi(t), t \geq 0)$ does not change at the moment of jumps.

A portfolio π represents an arbitrage opportunity relative to another portfolio ρ if

$$V^\pi(T) \geq V^\rho(T) \text{ a.s.}$$

$$V^\pi(T) > V^\rho(T) \text{ with positive probability}$$
Under certain conditions on parameters,

- This model is **non-explosive**: the quantity of stocks does not go to infinity in finite time
- An equivalent martingale measure exists, so there is no **arbitrage**: we cannot beat the market

For market models with constant number of stocks, diversity leads to arbitrage. For varying number of stocks, this is no longer true. (On this, see also Fouque & Strong, 2011)
We choose two companies to be merged as follows. Exclude the company with the **largest capitalization**. From the remaining $N - 1$ companies, choose a subset of two companies uniformly. Each subset is chosen with probability $1 / \binom{N - 1}{2}$.

For some parameters $c, \alpha > 0$, the rate of merging:

$$\lambda_N \sim cN^\alpha \text{ as } N \to \infty.$$

Additional Condition: The top stock (with rank 1) has minimal drift coefficient.
Thank You!