Approximation of Reflected Diffusions by Solutions of SDE

Andrey Sarantsev (joint with Cameron Bruggeman)

University of California, Santa Barbara

October 7, 2015
Reflected Brownian Motion on the Half-Line
\[Z = (Z(t), t \geq 0) \text{ on } \mathbb{R}_+ := [0, \infty). \]

- When \(Z(t) > 0 \), \(Z \) behaves as a Brownian motion.
- When \(Z(t) = 0 \), \(Z \) is reflected back.
- \(Z(t) \) cannot be negative.
We can write $Z(t)$ as

$$Z(t) = W(t) + L(t),$$

where W is a Brownian motion, and L is a nondecreasing random process with $L(0) = 0$ which can increase only when $Z(t) = 0$.

When $Z(t) = 0$ and $Z(t)$ wants to go below zero, $L(t)$ increases so that $Z(t)$ stays nonnegative.

$Z(t)$ cannot penetrate the barrier at zero.
We can think about $L(t)$ as a singular drift at $x = 0$, which creates a hard barrier at zero.

Question: Can we approximate this hard barrier by a soft barrier created by the drift:

$$dX(t) = b(X(t))dt + dW(t)?$$

In particular, $b(x) = a1_{[-c,0]}(x)$ for a large $a > 0$, a small $c > 0$.
Take two sequences \((a_n)\) and \((c_n)\) of positive numbers such that
\[
a_n \to \infty, \quad c_n \to 0, \quad a_n c_n \to \infty.
\]
Take a sequence of stochastic processes
\[
dX_n(t) = a_n 1_{[-c_n,0]}(X_n(t)) dt + dW(t).
\]
Then \(X_n \Rightarrow Z\) in law on \(C[0, T]\).
That is, for every Borel subset \(F \subseteq C[0, T]\) with \(P(Z \in \partial F) = 0\),
\[
P(X_n \in F) \to P(Z \in F).
\]
Main Approximation Result

\[dX_n(t) = f_n(X_n(t))dt + dW(t). \]

- for all \(\varepsilon > 0 \),
 \[\int_{-\varepsilon}^{\varepsilon} f_n(z)dz \to \infty. \]
- for all \([x_1, x_2] \subseteq (0, \infty)\),
 \[\int_{x_1}^{x_2} f_n(z)dz \to 0. \]
- there exists a \(\delta > 0 \) such that \(f_n(x) \geq 0 \) for \(n \) large enough and \(|x| < \delta \).

Then \(X_n \Rightarrow Z \) in law on \(C[0, T] \).
For a real-valued diffusion X, a function $s : \mathbb{R} \to \mathbb{R}$ is called a scale function if $s(X)$ is a local martingale.

The scale function s_{X_n} must satisfy the equation

$$\frac{1}{2}s_{X_n}''(x) + f_n(x)s_{X_n}'(x) = 0,$$

because the term with $\,\mathrm{d}t$ in Itô’s formula for $s_{X_n}(X_n(t))$ must be zero. After a correct choice of a particular solution s_{X_n}, we prove

$$s_{X_n}(x) \to s_Z(x) := \begin{cases}
 x, & x > 0; \\
 -\infty, & x < 0,
\end{cases} \quad n \to \infty.$$
Reflected Diffusions on the Half-Line
A continuous $\mathbb{R}_+\text{-valued}$ process $Z = (Z(t), t \geq 0)$:

- When $Z(t) > 0$, it behaves as a solution of SDE with drift coefficient g and diffusion coefficient σ^2.
- When $Z(t) = 0$, it is reflected back to the positive half-line.

Formally speaking:

$$Z(t) = Z(0) + \int_0^t g(Z(s))\,ds + \int_0^t \sigma(Z(s))\,dW(s) + L(t),$$

where L is a nondecreasing random process with $L(0) = 0$ which can increase only when $Z(t) = 0$.
We can rewrite the last slide as

\[dZ(t) = g(Z(t))dt + \sigma(Z(t))dW(t) + dL(t). \]

Take the following SDE:

\[dX(t) = f(X(t))dt + \tilde{\sigma}(X(t))dW(t). \]

- \(f(x) \approx g(x) \) for \(x \geq x_0 > 0 \).
- \(f(x) \geq 0 \) is large when \(x \approx 0 \).
- \(\tilde{\sigma}(x) \approx \sigma(x) \) for all \(x \geq 0 \).

Then we can expect \(X \approx Z \).
Consider a sequence of solutions of SDE

\[dX_n(t) = f_n(X_n(t))dt + \sigma_n(X_n(t))dW(t). \]

- For all \(\varepsilon > 0 \), \(\int_{-\varepsilon}^{\varepsilon} f_n(z)dz \to \infty \).
- For all \([x_1, x_2] \subseteq (0, \infty)\), \(\int_{x_1}^{x_2} |f_n(z) - g(z)|dz \to 0 \).
- There exists a \(\delta > 0 \) s.t. \(f_n(x) \geq g(x) \) for \(n \geq n_0 \) and \(|x| < \delta \).
- For every \(x \geq 0 \), \(\sigma_n \to \sigma \) uniformly on \([0, x]\).
- The family \((\sigma_n)\) is equicontinuous at \(x = 0 \).

Then \(X_n \Rightarrow Z \) in law on \(C[0, T] \).
Multidimensional Reflected Brownian Motion in a Domain
A domain (open connected subset) $D \subseteq \mathbb{R}^d$. Boundary ∂D is smooth, except non-smooth parts $\mathcal{V} \subseteq \partial D$ of the boundary.

Example: $D = \mathbb{R}^d_+$ is the orthant, ∂D consists of d faces

$$S_i := \{ x \in S \mid x_i = 0 \}.$$

Then $\mathcal{V} = \bigcup_{i < j} (S_i \cap S_j)$.

Subset \mathcal{V} is **small**: $\text{dist}(x, \partial D) = \text{dist}(x, \partial D \setminus \mathcal{V})$ for all $x \in \mathbb{R}^d$.
At every point $x \in \partial D \setminus \mathcal{V}$, inward unit normal vector $n(x)$.

Continuous reflection field $r : \partial D \setminus \mathcal{V} \to \mathbb{R}^d$, $r(x) \cdot n(x) \equiv 1$.

If $r(x) = n(x)$: normal reflection. Otherwise: oblique reflection.
Informal Description

Fix $\mu \in \mathbb{R}^d$ and a positive definite symmetric $d \times d$-matrix A.

$Z = (Z(t), t \geq 0)$, a continuous process with values in \overline{D}.

- When $Z(t) \in D$, it behaves as a d-dimensional Brownian motion with drift vector μ and covariance matrix A.
- When $Z(t) = x \in \partial D \setminus \mathcal{V}$, it is reflected inside D in the direction of the reflection vector $r(x)$.
- When $Z(t) \in \mathcal{V}$, it is stopped.
\[Z(t) = W(t \wedge \tau_V) + \int_0^{t \wedge \tau_V} r(Z(s)) dl(s) \]

- \(W = (W(t), t \geq 0) \) is a \(d \)-dimensional Brownian motion with drift vector \(\mu \) and covariance matrix \(A \)
- \(\tau_V := \inf\{ t \geq 0 \mid Z(t) \in \mathcal{V} \} \) is the first hitting moment of the set \(\mathcal{V} \) by the process \(Z \)
- \(l = (l(t), t \geq 0) \) is a continuous real-valued nondecreasing function with \(l(0) = 0 \), which can increase only when \(Z(t) \in \partial D \)
Term with l: **hard barrier**, does not allow Z to get out of \overline{D}

Same question: can we emulate this by a **soft barrier** created by a drift coefficient?

$$dX(t) = f(X(t))dt + dW(t)$$
First, let us assume that the limiting reflected Brownian motion a.s. does not hit non-smooth parts \mathcal{V} of the boundary ∂D.

This is automatically true when the boundary is smooth.

For an important case $\overline{D} = \mathbb{R}^d_+$: multidimensional positive orthant, sufficient conditions are known (Sarantsev, 2015).
Let \(\phi(x) \) be the signed distance from \(x \) to \(\partial D \) (positive if \(x \in D \), negative if \(x \notin \overline{D} \)). Fix a compact subset \(K \subseteq \mathbb{R}^d \setminus \mathcal{V} \). Let

\[
\Delta_n(s) := \min_{\substack{x \in K \\phi(x) = s}} \|f_n(x)\|.
\]

We need: for every \(\varepsilon > 0 \),

\[
\int_{-\varepsilon}^{\varepsilon} \Delta_n(s) \, ds \to \infty.
\]

Then the soft barrier is strong enough to repel \(X_n \) inside \(\overline{D} \) (asymptotically, as \(n \to \infty \)).
We also need the soft barrier to reflect the process in the same direction $r(x)$ when $Z(t) = x$. Let y_x be the closest point to x at the boundary ∂D.

$$\lim_{\epsilon \to 0} \lim_{n \to \infty} \sup_{x \in K, \text{ dist}(x, \partial D) \leq \epsilon} \left\| \frac{f_n(x)}{\|f_n(x)\|} - \frac{r(y_x)}{\|r(y_x)\|} \right\| = 0.$$
Assume these conditions above hold.

In addition, assume $f_n \to 0$ uniformly on compact subsets of D.

Then $X_n \Rightarrow Z$ in law on $C([0, T], \mathbb{R}^d)$.
Weak Convergence
of Obliquely Reflected Diffusions
A reflected diffusion $Z = (Z(t), t \geq 0)$ in the domain D.

- When $Z(t) \in D$, it behaves as a solution to an SDE with drift coefficient $g(\cdot)$ and covariance matrix $A(\cdot)$.
- When $Z(t) = x \in \partial D \setminus \mathcal{V}$, it is reflected inside D in the direction of the reflection vector $r(x)$.
- When $Z(t) \in \mathcal{V}$, it is stopped.
Take a sequence \((Z_n)_{n\geq 0}\) of such reflected diffusions.

Assume none hits non-smooth parts of the boundary.

If \(D_n \to D_0, g_n \to g_0, A_n \to A_0, r_n \to r_0\) (in what sense?), then

\[Z_n \Rightarrow Z_0 \quad \text{in law on} \quad C([0, T], \mathbb{R}^d). \]

This is a generalization of Burdzy & Chen (1998), where they proved this for normally reflected Brownian motions, but under more general conditions.
The functions g_n are defined on different domains D_n.

We need: for every sequence (n_k),

\[\text{if } z_{n_k} \in D_{n_k}, \text{ and } z_{n_k} \rightarrow z_0 \in D_0, \text{ then } g_{n_k}(z_{n_k}) \rightarrow g_0(z_0).\]

Same for A_n defined on D_n, and r_n defined on $\partial D_n \setminus \mathcal{V}_n$.
For each D_n, let $\phi_n(x)$ be the signed distance to ∂D_n: positive inside D_n, negative outside.

We say D_n converges weakly to D_0 if

$$\phi_n(x) \to \phi_0(x) \quad \text{for all} \quad x \in \mathbb{R}^d.$$

This is weaker than Hausdorff convergence, but stronger than Wijsman convergence, which is $\text{dist}(x, D_n) \to \text{dist}(x, D_0)$.

Andrey Sarantsev (joint with Cameron Bruggeman)

Thanks!